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FOREWORD

Work described in this report was performed by personnel of Textron's Bell
Aerosystems Company for the Structures and Mechanics Division of the NASA Manned
Spacecraft Center, Houston, Texas under contract NAS 9-3528. The work was per-
formed in the period September 12, 1964 to March 1, 1966 under the direction of
Mr. R.H. Gallagher, who acted as Principal Investigator. The effort was monitored
by Mr. F.J. Stebbins of the Structures and Mechanics Division, NASA Manned Space-
craft Center.

The subject effort entailed contributions from many disciplines and therefore
represents the contributions of numerous individuals other than the cited authors. The
authors are particularly appreciative of the support provided this project by Messrs.
F. Braun, and W. Luberacki.
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ABSTRACT 2 N4

Analyses are performed of the Apollo Aft Heat Shield for conditions of water
impact and thermal stress. The water impact condition is first treated as a quasi-
static problem in the determination of localized stresses of a critical nature. Two
separate temperature profiles are examined in the solution for thermal stresses.

Dynamic response and elastic instability analyses are performed for a limited
number of conditions in order to confirm the influence of these effects with respect to
the quasi-static solution. The concepts of discrete element analysis, as they pertain
to the Apollo Aft Heat Shield, are reviewed and more advanced and satisfactory
idealization procedures are defined.
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I. INTRODUC TION

In September, 1964, the NASA Manned Spacecraft Center contracted with Bell
Aerosystems Company for a six-month study of the application of the discrete element
structural analysis method to the prediction of thermal stresses in the Apollo command
module aft heat shield. Shortly thereafter, in Dec., 1964, the Apollo aft heat shield sus-
tained damage during tank-testing, occasioning efforts directed towards structural
design changes, particularly with respect to the scalloping of the face sheets. Bell
Aerosystems Company was asked to assist in this work, via an extension of the con-
tract, and numerous analyses were performed to guide the specific nature of the
scalloping to be effected.

The latter effort, which was conducted within a very short period of time, was
amplified in March 1965 into a more extensive examination of the heat shield with
respect {owater impact and thermal stressing conditions. This work is described in
detail herein. Other objectives include the substantiation for this class of structure of
the principal analysis technique--the matrix discrete element approach--through
comparisons with experimental and classical analysis results, and the development of
design data for the general heat shield problem.

To meet these objectives, the subject effort was divided into five areas of
activity each with subsidiary work items. These are the

(1) performance of basic design analyses for water impact, treated as a quasi-
static problem, and for thermal stress conditions.

(2) performance of dynamic response analyses for a limited number of
conditions.

(3) determination of buckling pressures for water impact conditions

(4) examination of discrete element stiffness equations for more accurate
matrix analysis of heat shield structures.

(5) development of a classical solution and, from this, design charts for
anticipated heat shield design problems.

Section II of this report describes the work performed in connection with basic
design analyses. These analyses exclude the effects of dynamic behavior and elastic
instability. Included are assessments of convergence characteristics, two thermal
stress analysés, and an extensive series of analyses representing a quasi-static
treatment of water impact conditions.

Analyses in which the effects of dynamic response are neglected generate results
which are expected to be conservative. Since it is desirable to obtain a quantitative
estimate of the degree of conservatism, if any, involved in the static analysis, the
dynamic response of the Apollo aft heat shield to water impact was determined. One

Report No. 7218-933004 I-1
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impact angle was chosen and histories of the loading at all affected points were
defined. The results of this effort appear in Section ITI.

Elastic instability effects are examined in Section IV. The water impact con-
dition produces membrane stress throughout the heat shield and it is conceivable that
these stresses could be large enough to produce a failure of the heat shield in an
elastic instability mode. Thus, using a discrete element approach to linear instability
analysis, computations were performed for three distributions of pressure to deter-
mine the intensity of pressure to cause buckling. The results, which were modified by
means of empirical factors to account for the influence of nonlinear effects on
buckling, indicate a small but positive margin of safety.

The questions of an appropriate discrete element idealization for the Apollo aft
shield are examined in Section V. The significance of the heat shield as a sandwich
structure is considered and it is found that principal modes of behavior are represented
with sufficient accuracy by means of conventional thin plate formulations. A discrete
element formulation for sandwich structures is advanced, however, and it is shown that
it holds promise for accurate representation of shallow sandwich shells, provided a
high degree of gridwork refinement is feasible. The existing discrete element formu-
lations for shallow shell analysis are reviewed and it is found that new approached,
based on satisfaction of interelement compatibility requirements, hold promise for
resolution of difficulties inherent in the present formulations.

A clagsical approach to the problem of analyzing the Apollo heat shield is pre-
sented in Section VI. This approach covers both thermal stress and applied load
situations and is extended to account for the overhang of the heat shield beyond the

bolt circle. Conclusions are presented in Section VII.
The detailed aspects of the discrete element procedures for instability and

dynamic analysis are given in two appendixes. Another Appendix describes the Bell
General Purpose Structural Analysis Computer Program.

Report No. 7218-933004 I-2
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II. BASIC DESIGN ANALYSES

A, OBJECTIVES

Within the design analyses, a number of classes of problems have been treated.
These include

(1) Analyses to determine the effects of grid refinements

(2) Analyses in support of the design activity which took place during January
1965

(3) Analyses to determine critical water impact cases.

(4) Analyses for the stresses and displacements of the shield under elevated
temperature conditions

The actual structure of the Aft Apollo Heat Shield is drawn in Figure II-1. This
is the "Block 2'" heat shield, with sculptured face sheets. Since the specified loadings,
which arise from either water impact pressures or temperature, are symmetric about
the axis of geometric symmetry, only one half the heat shield is considered in
analyses.

TNAatailad Ao ddern ~AF 4o ol 41w, +
Detailed objectives of the above three types of analyscs, together with the resulis

obtained, will be presented following a brief review of the analysis procedure and the
material properties common to all analyses.

Included were an extensive series of analyses performed during early phases of
the project in conjunction with unscalloped designs, various arrangements of the
scalloping, and with the verification of test results from experiments conducted on the
ATR-209 heat shield specimen.

B. DESCRIPTION OF PROCEDURE

The analyses of the Apollo aft heat shield described in this section were per-
formed with use of the Bell General Purpose Structural Analysis Program. This pro-
gram is based on the discrete element approach to matrix structural analysis. A
complete description of the theoretical basis of the program, together with an outline
of program capabilities, is presented in Appendix A.

Figure II-2 illustrates a typical idealization of the heat shield structure by
means of discrete elements. In the idealization shown, five different types of element

are employed.

(1) quadrilateral plate in plane stress

(2) triangular plate in plane stress.

Report No. 7218-933004 -1




Figure IlI-1a

58.10 in. —— o
e 106.1 in. -
| i e 85.5 in. -

| l— 65.33 in. ——

Figure II-1b

Figure II-1b. Block No. 2 - Apollo Aft Heat Shield Scalloped Face Thickness
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(3) quadrilateral plate in bending
(4) triangular plate in bending

(5) axial-flexural-twist element

The first four elements are actually representative of two physical elements of
the structure, the quadrilateral and triangle. These elements appear in Figure II-3.
From a theoretical standpoint, it is necessary to divide the deformational behavior of
these elements into plane stress and flexural behavior, respectively.

A detailed development of the pertinent analytical relationships for these plate
elements, in the form of the pertinent stiffness matrices and terms for thermal stress
analysis, is given in Reference 3. It should be noted that the flexural properties for
both elements are based on simple assumed displacement assumptions of polynomial
form.

In establishing the membrane and flexural rigidities of the plate element, for
water impact analysis, the sandwich form of construction requires special considera-
tion. Denoting the face thickness as tf, the membrane ridigity, Dm can be written as

D, = EQ%) tf) (I1-1)
(1=
where &4 is Poisson's ratio. Any direct stress carrying capacity of the ablator,
bond, and core is disregarded in the water impact computations. (The ablator is
included in analyses for thermal stress conditions.) The membrane rigidity is
normally expressed as

Du. = Els (11-2)
(1-»%)
Hence, by comparison of II-1 and I1-2
tw=at; (II-3)
For the flexural rigidity at a plate, Db , one can write
3
D, : ES (I1-4)
12(1-»%)
In the case of the sandwich, however, the flexural rigidity is actually

_ Etgh

5T 2(-m7) {-5)

Comparing I1-4 and II-5

tyz Vet b (m-6)

Report No. 7218-933004 II-4
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The following is a listing of the equivalent thicknesses, éh and {1, , as computed
from equations II-3 and II-5, for the various face thicknesses for sandwich portions of
interest (h = 2.0 in.) are:

tf tm tb
0.008 0.016 0.577
0.012 0.024 0.661
0.020 0.040 0.783
0.030 0.060 0.896
0.050 0.100 1.063
* 0.025 0.513

*Corrugated torus flange

The fifth element cited previously is the axial flexural-torsional element used to
represent the ring at the circumference of the heat shields in the analyses where the
corrugated torus was included. The section properties used were:

Area = 0.235 in.2
Moment of Inertia about the X' Axis = 0.309 x 10~2 in.4
Moment of Inertia about the Y' Axis = 0.650 x 102 jn.4
Torsional Rigidity = 0.710 x 1072 jn.%
Report No. 7218-933004 -5
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Figure II-3. Plate Elements for Heat Shield Analysis
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TABLE II-1

NODE POINT COORDINATES - COARSE GRID

Node
Point

O M 030 U B W =

L W LD DD DNNDDNDNDN D bt et o ped fd fod fod ped et
WOV OO WNHO OO UR LN O
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(See Figure II-2 for Layout)

-72.21
-58.100
-47.982
-29.266
-10.550
9.570
30.170
58.100
72.210
-72,032
-57.879
-49.021
-31.001
-12.981
6.392
26,226
46,797
61.121
-71.210
-56.853
-52.259
-36.407
-20.555
-3.514
13.935
29.260
-67.158
-55.050
-45.854
~-57.962

--32,046

-44.153
-12.055
-24.163

C OO OO OO0

(=4

5.063

5.063

7.550
12,606
17.663
23.094
28.659
34.433
38.451
11,973
11,973
14 859
24.809
34.759
45,456
56.404
66,016
26.535
18.577
35.680
43.066
48.463
57.139
56.836
68.047

160,066
165.710
168,919
173.144
175.283
175,338
172,989
165.710
160,066
160.066
165.710
168.450
172,382
174,227
173.957
171.250
165,710
160,066
160.066
165.710
166.984
169,985
170.894
169.578
165.710
160.066
160.066
165.710
165.710
160.066
165.710
160.066
165.710
160.066
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C. MATERIAL PROPERTIES

The cross section of the Aft Apollo Command Module Heat Shield is shown in
Figure II-1. Since the properties of the bond are neglected in all analyses described
in this report, the materials of interest are the ablator, the face sheets of the sand-
wich skins, and the core of the sandwich. Only the face sheet properties play a role
in water impact analyses and for these the properties are assumed constant at the
following values.

Modulus of Elasticity

E=29.5x 106 psi

s

Poisson's Ratio

o =10.30
Specific Weight

/0 =0.283 lb/in.3

Also, in examination of the pertinence of core shear deformation effects:

5

E=10 psi
Gc =2.8x 104 psi (Vertical shear-both directions).

For thermal stress analyses, where the significance of the temperature dependence of
material properties must be taken into account, the data represented in Figure II-4
was employed.

D. EFFECTS OF GRIDWORK REFINEMENT

In order to determine the influence of gridwork refinement, a comparison of
flexibility coefficients using two different grids was carried out.

In defining the basic form of the gfids which are to be usedinthe discrete element
analyses of the heat shield, the shape of the sculpturing of the skins must be taken into
account. Although all sculpturing contours are based upon radii drawn from a reference
point lying outside the heat shield, a grid which is principally polar with the reference
point as origin appears to be the most attractive from the standpoint of the overall
planform. A grid using this concept is presented in Figure II-5. In this case, there
are 100 node points, each possessing five degrees of freedom (rotational freedom about
a normal to the shell surface is basically deleted). When the boundary conditions are
introduced, the total number of degrees of freedom is reduced to slightly below the
maximum of 492 allowable in the Bell General Purpose Analysis Program. This grid
then is typical of the maximum refinement in any particular area would necessitate an
increase in the element size elsewhere.

Report No. 7218-933004 II-8
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NODE POINT COORDINATES - REFINED GRID

Node Pt.

00 =3O U1 W=
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X

. -72.21

-65.155
-58.10
-53.407
-47.982
-38.624
-29.266
-19.908
-10.55
0
9.57
19.87
30.17
44.135
58.10
72.21
-172.167
-65.107
-58.046
-53.625
-48.253
~38.986
-29.718
-20.451
-11.184
-0.736
8.741
18,941
29.141
42,971
55.115
69.278
-72,032
-64.958
-57.879
-54.244
-49.021
-40.011
-31.001
-21.991
-12.981

TABLE NI-2

Y

OO0 0O OO ODODOOOLLOOCO O

2.504
2.504
2.504
3.126
3.883
5.184
6.479
7.781
9.083
10.546
11.877
13.309
14.741
16.678
18.383
20.368
5.063
5.063
5,063
6.083
7.550
10.078
12.606
15.134
17.663

Z

160.066
163.065
165.710

 167.282

168.919
171.300
173.144
174.468
175.283
175.6

175.339
174.473
172.989
169.964
165.710
160,066
160,066
163.065
165.710
167.182
168.796
171.140
174.114
174.231
175.008
175.282
174.980
174,067
172.537
169.442
165.710
160.066
160.066
163.065
165.710
166.901
168.450
170.684
172.382
173.560
174.227
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Node Pt.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
58
60
61
52
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

X

-2.823
6.392
16.309
26.226
39.672
46.797
61.121
-71.796
-64.696
-57.585
-55.171
-50.171
-41.547
-32.922
-24.297
-15.672
-5.948
2,872
12,365
21.858
34.734
49.343
-72.210
-64.045
-956.853
~-52.259
-44.333
-36.407
-28.481
-20.555
-11.619
-3.514
5.212
13.935
29.260
-68.961
-62.597
-55.050
-48.060
-41.068
-34.077
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TABLE II-2 (CONT)

Coordinates

Y

20,512
23.094
25.877
28.659
32.431
34.433
38.451

7.719

7.719

7.719

8.738
10.843
14.476
18.106
21.737
25.368
29,460
33.174
37.170
41.167
46.574
52,721
11.973
11.973
11.973
14.859
19.833
24.809
29.784
34.759
40,366
45.456
50.928
56.404
66.016
21.416
18,140
18.577
24.800
31.019
37.240

y/
174.375
173.957
172.915
171.250
167.958
165.710
160.066
160.066
163.065
165,710
166.480
167.931
170.000
171.533
172.549
173.050
173.009
172.415
171,176
169.301
165.710
160.066
160.066
163.065
165.710
166.984
168.751
169.985
170.696
170.894
170.502
169.578
167.972
165.710
160.066
160.066
163.065
165.710
167.064
167.889
168.188
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Node Pt.
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
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X

-27.086
-19.205
-12.055

0

0
-67.158
-60.776
-63.136
-51.029
-57.962
-45.854
-51.634
-39.527
-44.153
-32.046
~34.336
-22.228

AT

TABLE II-2 (CONT)

Coordinates

Y

43.461
50.474
56.836
58.10

72.21

26.535
23.483
35.045
27.779
43.066
35.680
50.480
42.582
57.139
48.463
63.524
53.680

829 NAT7
TV

Z

167.967
167.089
165.710
165.710
160,066
160.066
163.065
160,066
165.710
160.066
165,710
160.066
165.710
160.066
165.710
160,066
165.710
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The overall effects of grid refinement can, therefore, be studied by simplifying
the mesh of Figure II-5 . One scheme is to omit alternate grid and radial lines. It
is important, in the assessment of convergence characteristics, to utilize a regular
and consistent refinement of the grid. This new grid (see Figure I}-2) then represents
effectively the coarsest acceptable mesh. Any further reduction in the number of
node points would introduce elements of unreasonable size.

Using these two grids, and with constant face thicknesses for simplicity, static
analyses were performed and inter alia the influence coefficient matrix (inverse of the
stiffness matrix) obtained. The direct flexibilities for all node points on the axis of
symmetry have been selected as realistic characteristics of the structure and are
presented in Figure II- 6 . The curves are not simple deflections under a fixed
loading system, but are the deflections at each individual node point for a unit load
applied at that point.

As can be seen, the agreement between the two curves is very good, especially
in the region in which impact loads will occur, i.e. to the right of center as drawn.
The larger discrepancies between the curves, which occur to the left of center, are
associated with the relatively larger discrete elements used in that region. In an
actual problem, where the loading does not extend over the entire heat shield, the
influence of the above differences is of reduced significance. ¥rom this comparison,
it can be concluded that the coarse gridwork used in the dynamic and instability analysis
investigations, described in later sections, yield acceptably accurate results. The
more refined grid is retained in the prcsent static design analyses in order to provide

more detailed information about the peak stresses.
E. ANALYSES IN SUPPORT OF DESIGN CHANGES

Work on the subject contract was initiated during September, 1964. During the
period between then and March 1, 1965, a succession of analyses were performed in
attempts to resolve critical problems which arose as a series of new design conditions,
proportions, and arrangement were to meet requirements imposed by water impact.
Included were analyses which were solely intended to verify the discrete element ap-
proach as an applicable tool for heat shield analysis through comparison with heat
shield test data.

Table II-3 summarizes the analyses performed prior to March 1, 1965. A total
of sixteen analyses were listed. Each is identified by such factors as the gridwork
employed, the nature and intensity of the imposed loading condition, the support con-
ditions, etc. Results for these analyses were transmitted to NASA MSC, accompanied
by sketches which describe the idealization, etc. Reference can be made to these
sketches for further identification of the listed analyses.
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TABL
ANALYSES PRIOR

Run Grid Pressure psi r'* Impact Center

1 I 50 43.0 z = 36

2 I 100 43.0 z = 36

3 i Variable

4 I Variasie

v

5 \' 100 13 10° z 30

6 \' 100 13 15° z 44
15 v 100 13 15° z 44

7 VI 100 13.2 15° z 44
14 v 100 13.2 15° z 44

8 VIl | 100 10 10° z 30

9 VIII 100 13 10° z 30
10 v 100 15 10° z 3¢
11 Vil 100 10 15° z 4a
12 VIl 100 13 15° z 44
13 vl 100 15 15° z 44 .
16 ‘ X 100 13 15° z 44

|

*Radiusg of Loaded Area

+
The notation "sprii 5 ~efers to tne use of an approximation
for the flexibility of the conic sectior of the command module
structure
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@ BELL AEROSYSTEMS cOMPANY __ .

2 -3
IO MARCH 1, 1965

E Face Sheets Boundary Conditions Group Case
0.008 Simple Support, Torus Spring+

: 0.008

l 0.008 ATR 209 Tsrus Free

| 0.008 ATR 209 Torus Spring
0.008 One Quadrant, ATR 209
0.008 No Springs 4 1
0.008 With Springs 4 2
0.008 No Spring 4 B
Scalloped Guide Grid, Fixed Support, Torus Free 5 » A
Scalloped Refined Grid, Fﬁed Support, Torus Free 5 B
Scalloped Simple Support, Torus Spring 6 B-1
Scalloped Simple Support, Torus Spring 6 B-2
Scallo sed Simple Support, Torus Spring 6 B-3
Scalloped Simple Support, Torus Spring 6 B-4
Scalloped Simple Support, Torus Spring 6 B-5
Scalloped Simple Support, Torus Spring 6 B-6
0.008 Const Simple Support, Torus Free 7

1
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F. ANALYSES FOR CRITICAL IMPACT CASES

Two general groups of analyses were performed of water impact conditions
for the Apollo aft heat shield. One group pertains to drop tests performed by NASA
of the BP28 item. These tests are known as tests No. 91, 92 and 93. The second
group of analyses, known as the ""water impact series', were conducted to determine
the critical combinations of impact angle and wetted area in a general manner.

Consider first the drop test analyses. The three tests correspond to water
impact angles of 29.2°, 19.6° and 16.5° respectively. In order to provide information
over the complete water impact, five circular wetted areas were considered for
each of the impact angles. The radii were 10 in., 15 in., 20 in., 25 in. and 40 in.

The fifteen design cases were then analyzed using the grid pattern of Figure II-5,
with a nominal pressure of 100 psi in each case. The actual pressures for each case
are taken from Figure II-7, which presents the pressure-time history for an impact
velocity of 35 ft/sec. The corresponding radii of contact areas have been obtained
from other data from MSC. The results from the analyses are then scaled by the
appropriate factors.

Results, in the form of deflection profiles along the axis of symmetry, are
presented in Figures I1-8 to II-13 for all fifteen cases considered. The complete
results, in the form of displacement components at all of the node points and stresses
within the respective elements are listed in the computer analysis printout, furnished
with this report.

In the water impact series of analyses the objective was to determine the
critical combinations of impact angle and wetted areas for the heat shield. The
criteria which were to be applied are those of maximum displacements, maximum
membrane stresses in the faces, and maximum shear stresses in the sandwich
core.

In order to cover the widest range of conditions, while keeping the amount of
data as low as possible, it was decided that four impact angles combined with six
wetted areas would provide a sufficient number of analyses. The impact angles used
were 10°, 15°, 20° and 25°, and the wetted radii 10 in., 13 in., 15 in., 18 in., 20 in.,
and 40 in. The velocity of impact has been taken as 35 ft/sec. In general, the
refined gridwork shown in Figure II-5 was used.

Figures II-14 to II-17 show the variation of deflection along the axis of
symmetry with wetted radius and angle of impact. These show that the maximum
deflection occurs in the region between 20 in. and 40 in. radius.

The maximum stress in the faces is shown in Figure [I-18. These maximum

stresses are obtained as the sum of membrane and bending stresses and occur at
various points on the center line of the heat shield.
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At the bolt circle, where the largest shear stresses are recorded, two shear
stresses can be computed. These correspond to the heat shield inside and outside
the bolt circle respectively. Since the discrete element method generates shear
forces at the centroids of the elements, it is necessary to perform an interpolation-
extrapolation on the element shear forces and the edge reactions to obtain the shear
force distributions at the bolt circle itself. (The edge reaction force is equal to the
change in shear force of the bolt circle.)

Figures II-19, I1-20, and II-21 show some typical shear stress distributions
around the bolt circle. As indicated, the distance between the curves represents the
bolt circle reaction.

Figure II-22 depicts the maximum shear stresses inside and outside the bolt
circle respectively for the range of impact centers and radii considered.

Figure II-23 and Figure II-24 present the variation of the maximum face stresses
and shear stresses with impact angle.

For cases where the load center lies within or on the bolt circle, (¢é 20°)
the maximum stress is 112,000 psi and lies well within the maximum allowable
stress of 150,000 psi. For cases where the load center lies outside the bolt circle
(¢ >20°) the maximum stress is 147,000 psi. This can be regarded as pessimistic
value, however, since the torus of the heat shield is assumed free to displace in
the direction of the applied load. The effect of the actual support is to diminish
the above predicted stress level.

In the case of the shear forces, the peak values for both inside and outside the
bolt circle occur when the impact center lies on the bolt circle. The maximum values
are 3050 1b/in. and 3200 1b/in. respectively. Both values, unfortunately, lie above
the quoted allowable of 2600 1b/in., but test results apparently indicate that the core
can sustain such shears.

Report No. 7218-933004 1-30



up gz =¥ ‘ ST =¢ °10a1D 310d 9y} BuoTy aedYS ‘61-II SIN3Id

ul - A1joWWAS JO SIXY WOdJ 91041) o Juoly aouelsiqg
0¢ 82 92 %z 22 0¢ 8T 9T %1 <21 OI 8 9 14 4 0

000€-
0002-
o10a1D 3109 SpISUl A —
l/ \\\\Hl\l
—— 000T-
. \\
Jedys uoroeey
— 0
T~ a1041 3104
/
I\J://// 00071
oT0IID 10€ SPISIMO- /L[
[r——
0003
uf /ul
JIBaysg 910D

o-31

Report No. 7218-933004




“u] g = ¥ ‘9T =¢b 921D Ijog oy} Buoly JeAYS 03-II 2INd1g

soyou] - a[oa1D Tod 9Yj uoly A1jowwAG Jo SIXY WOIg 89UBISId

06 82 92 ¥¢ g2 02 8T 9T %I 2l Ol 8 9 b4 G 0

0008~
0002~
STOaID 310€ OPISUI-1y
V\‘\\\ﬁ\\
—— 0001~
——
\\.
IBOYg UOoljOBeY
0
101D 3109
/!/
/L/
000T
[————l
I B e e S A
8[0I1D 310g OPISINO
0002
ul/qy
Jeoyg aJ10)d

II-32

Report No. 7218-933004



0€

w0z = ¥ ‘402 =G 219310 310g o4 Buoly IBOYS TZ-II 9INBLd

'ur — oroar) irog 3uoly Arjewrurig jo SIXy wolq 9ousisiq

82 92 %2 2z 0Z 8T 9T ¥ 2T o 8 9 ¥ 2T O
_ 000€-
T ~
\ — 0002-
310110 Y106 OPISUL 1 prain
e “ 000T-
[~ “
\\
e Ttoyg uonoeay 0
B s[oa1D 109
// 000T
/I
a10a1) 310d SpISINO ~
000§

‘ur/q[ - 399Yg 910D

o-33

Report No. 7218-933004




4000

Maximum Core Shear Inside Bolt Circle
¢=20°
3000
. ” ]
g / T~
S ™~
T ¢ =15° \\
52000 P N -
3 \_\ \
& ] ¢ = 25° Y
&
(@]
&}
1000
0
10 14 18 22 26 30 34
Wetted Radius — inches
4000
Maximum Core Shear Outside Bolt Circle
| ¢ =20°
"\
3000 B
£ -~
E ,/ \‘\
! / ¢ = 25° %
5 —
2 =
L —]
3 ]
1000 //
¢ =15° /
/l
//
0
10 14 18 22 26 30 34

Wetted Radius — inches

Figure II-22., Maximum Core Shear Inside and Outside the Bolt Circle
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Figure II-23. Variation of Maximum Face Stress with Impact Angle
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G. THERMAL STRESS ANALYSES

Two thermal stress analyses were performed of an idealization of the heat
shield in which it is assumed to possess constant face sheets of 0.008 in. The heat
shield is assumed to be hinged at the bolt circle, thereby producing a restraint of
displacement in the radial direction of the plane of the bolt circle. The gridwork for
these analyses appears in Figure II-25. Note that the torus section ("'overhang') is
included in the analytical representation and that the outer periphery of the torus is
hinge- supported. The temperature of the structure in the stress free state is spe-
cified as 185°F. No external loads are considered in the two analyses described in
this section.

The first of the two analyses performed is designated as the "thermal soak"
case. In this condition, a stabilized temperature of -150°F throughout the entire
structure is realized. Since the ablator and the heat shield are composed of dis-
similar materials, the change in temperature produces not only thermal forces but
also thermal moments.

The second case is designated as the thermal reentry condition. Here, the
temperature varies over the surface of the heat shield. The outer surface of the heat
shield. The outer surface of the ablator possesses a constant temperature of 1000°F.
This temperature is assumed to vary across the ablator according to a parabolic law,
reaching the same temperature as the skin of the sandwich on the other surface. The
temperature of the sandwich is constant between the faces, but varies over the sur-
face of the heat shield. This variation, which characterizes the temperature state,
is defined by the listed node point temperatures, given in Table III-5.

A determination of thermal forces and moments was necessary for both cases.
The formulas for thermal force and thermal moment, per inch, are

¢

5
Thermal Force 5- L£XT dz
o

ds )
Thermal Moment f fMT(Z‘gb) ‘/2
©
L4
| FxTZ Lz
where Z,

glsé'a( 7 dz

The temperature (T) in these equations is the temperature change from the
stress free state. ‘A temperature distribution sketch follows.
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TABLE II-4

NODE POINT COORDINATES - THERMAL STRESS ANALYSIS GRID

X
1 21.40
2 36.509
3 45.449
4 54,264
5 58.038
6 71.980
7 75.050
8 74.640
9 19.771
10 33.730
11 41.989
12 50.133
13 53.620
14 66.500
15 69.337
16 68.958
17 15.132
18 25.816
19 32.137
20 38.370
21 41.039
22 50.898
23 53.068
24 52.778
25 8.189
26 13.972
27 17.392
28 20.766
29 27.210
30 27.546
31 28.720
32 28.563
33 ]
34 0
35 0
36 0
37 0
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co o000 OO ¥

8.189
13.971
17.392
20.766
22.210
27.546
28.720
28.563
15.132
25.816
32.137
38.370
41.039
50.898
53.068
52,778
19.7711
33.730
41.989
50,133
53.620
66.500
69.337
68.958
21.400
36.509
45.449
54,264
58.036

Y/

174.292
171.763
169.616
167.006
165.731
160.168
156.778
152,223
174.292
171.763
169.616
167.006
165.731
160.168
156.778
152.223
174.292
171.763
169,616
167.007
165.731
160.168
156.778
152.223
174.292
171.763
169,616
167.006
165,731
160.168
156.7178
152.223
174.292
171.763
169.616
167.007

165.731

Coordinates

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

co o W

-8.189
-13.972
-17.392
-20,766
-22.210
-27.546
-28.720
-28.563
-15.132
-25.816
-32.137
~-38.370
-41.039
-50.898
-53.068
-52.778
-19.771
-33.730
-41.989
-50.133
-53.620
~-66.500
-69.337
-68.958
-21.400
-36.509
-45.449
-54.264
-58.036
-71.980
~75.050
-74.640

0

Y

71.980
75.050
74.640
19.771
33.730
41.989
50.133
53.620
66.500
69.337
68.958
15.132
25.816
32.137
38.370
41.039
50.898
53.069
52.778

8.189
13.971
17.392
20.766
22.210
27.546
28.720
28.563

S OO0 00O QOO

Y/

160.168
156.778
152.223
174.292
171.763
169.616
167.006
165.731
160.168
156.778
152.223
174.292
171.763
169,616
167.006
165.731
160.168
156,778
152.223
174.292
171.763
169.616
167.006
165.731
160.168
156.778
152.223
174.292
171.763
169.616
167.006
165.731
160.168
156.778
152,223
175.6
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TABLE II-5
REENTRY TEMPERATURES AND ABLATOR THICKNESSES

Node Temperature Ablator Node | Temperature Ablator
Point °F Thickness in. Point °F Thickness in.
1 235 1.65 38 162 1.68
2 291 1.54 39 94 1.64
3 373 1.50 40 80 1.15
4 440 1.49 41 152 1.76
5 460 1.49 42 142 1.76
6 488 1.43 43 138 1.76
7 500 1.14 44 128 1.81
8 200 0.80 45 122 1.83
9 221 1.66 46 110 1.85
10 290 1.56 47 82 1.88
11 350 1.54 48 80 1.37
12 450 1.53 49 143 1.88
13 465 1.52 50 129 1.93
14 447 1.46 51 121 1.99
15 275 1.16 52 112 2.04
16 129 0.84 53 106 2.05
17 211 1.68 54 96 2.07
18 264 1.58 55 82 2.05
19 325 1.56 56 80 1.56
20 408 1.55 57 139 1.98
21 410 1.55 58 120 2.13
22 371 1.50 59 110 2.21
23 151 1.25 60 101 2.31
24 99 0.90 61 97 2.36
25 189 1.70 62 90 2.39
26 220 1.62 63 80 2.20
27 268 1.60 64 80 1.73 .
28 308 1.59 65 137 2.05
29 305 - 1.60 66 117 2.21
30 268 1.58 67 107 2.30
31 108 1.45 68 98 2.39
32 86 1.00 69 93 2.44
33 170 1.72 70 86 2.43
34 173 1.67 71 80 2.12
35 180 1.65 72 80 1.80
36 179 1.66 73 185 1.84
37 178 1.67
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The dissimilarity of materials on the cross-section presents a problem in the
determination of the proper membrane and flexural stiffnesses for the plate elements,
Actually program input requires the plate thickness as the basic parameter with, a
single modulus of elasticity and coefficient of thermal expansion pertinent to all
determinations., Here, the modulus of elasticity was chosen to be constant at
Ec = 30 x 106, and the other parameters were derived as follows:

In evaluating the foregoing integrals, the appropriate temperatures, ablator
thicknesses, etc., are utilized for each node point. For example, the values obtained
at the crown (node point 73) for both analyses are:

Cold Soak ' Thermal Reentry
Kxy 0.94224 (106) 0.49642 (106)
Kz 0.262616 (109) 0.108068 (109)
FT -3426.24 55.72
M -1503.90 101,06
T -150.0°F +185,0°F
Ta 1.84 in. 1.84 in,

Using these parameters, equivalent plate thicknesses are calculated. From the
determined thermal force, an equivalent coefficient of thermal expansion (o{;) was
then derived; retaining the actual temperature difference from the stress free state
(AT). For node point 73 the equivalent values are:

Cold Soak Thermal Reentry
t 0.03141 0.01655
m
t, 0.8179 0.6084
6‘0 0.2714 (10" ) 0.1121 (109
M., -1503.9 101.06
AT -335°F 1°F
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With these equivalent section and material properties, the general purpose
program then computes the correct stiffness and thermal forces.

Results of the thermal analyses appear in Figure II-26 and Table II-7 . The
figures illustrate the variation of displacement along the axis of symmetry. The
specific values of node point displacements upon which these representations are
based are given in Table II-7 | as are the displacements at other selected points
on the heat shield,

Figures II-27 to II-31 present the variation of meridional and circumferential
thermal stresses in the heat shield along the axis of symmetry.

In Figures I-27 to II-30 the stresses in the upper and lower faces of the
sandwich are shown for the thermal reentry and cold soak conditions. The peak
stress of 122000 psi occurs in the upper face near the bolt circle during the cold
soak. This stress, although high, is acceptable.

For the ablator the stress in the upper edge for the cold soak condition
(Figure II-31) reveals that the maximum stress is 1050 psi (tensile). This is well
above the maximum strength of the ablator material (approximately 600 psi).

However, in evaluating these results, especially the above ablator stress, the
entire thermal stress analysis must be carefully examined. In particular the boundary
conditions must be considered., At the bolt circle, it has been assumed that all
translational movement was completely restrained. In actual practice, the heat
shield is attached to the (non-rigid) internal cabin structure by supports which also
exhibit some degree of flexibility, While this assumption may be satisfactory for
conditions in which the loading is principally normal to the surface of the shell, in
the thermal cases, the radial expansive forces will probably cause appreciable

movement at the bolt circle with consequent reduction of the stresses quoted above,

In addition, no account has been taken in the analysis of the built-in thermal
stresses which exist in the heat shield. These arise from the fact that although the
heat shield zero stress temperature is taken as 185°F (the temperature at which the
ablator is attached), the assembly of the complete heatshield to the support structure
actually occurs at around 80°F

The thermal stresses obtained above may be regarded as having been derived
by a realistic approach to an unrealistic problem. In order to obtain more realistic
results it would be necessary to include the inner cabin structure in the analysis. To
do this would, in turn, increase the magnitude and complexity of the problem well
beyond the limits of the current contract and cannot therefore be considered at
present.
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II. DYNAMIC RESPONSE

A. INTRODUCTION

The basic design analyses described in the previous chapter have been per-
formed on a purely static basis, utilizing very refined gridworks. The deflection
curves, which have been obtained for various radii of wetted areas corresponding to
points of the water impact pressure-time history do not include dynamic effects.
Since the times involved are very small (< 0.05 sec), inertial and dynamic response
effects may have an appreciable significance. Analyses in which the effects of
dynamic response have been neglected generate results which are expected to be
conservative. It is desirable to obtain some quantitative estimate of the degree of
conservatism, if any, involved in the previous static analyses. For this purpose,
the dynamic response of the Apollo heat shield due to water impact was determined,
and the results are compared with those obtained from the static design analyses
in this section.

The items of work covered by the complete dynamic response analyses pro-
gram were as follows:

(1) After review of the results of the static analyses, loading cases and an
idealization for the heat shield were defined.

(2) Using the gridwork selecied, an anaiysis was performed 1o determine
the displacement influence coefficient matrix. A mass matrix for the
heat shield was also derived.

(3) For the selected analysis conditions and structural idealization, load-
time histories, F(t), were developed for all loading points.

(4) Dynamic analyses were then performed using the forcing functions
defined previously.

(5) Estimates were made of the significance of dynamic, as compared with
static, behavior with regard to stresses.

Each of the above items of work is discussed in the following sections. A detailed
explanation of the theory and procedures underlying these dynamic analyses appears
in Appendix B.

B. STRUCTURAL ]DEALIZATION

The chosen idealization appears in Figure III-1. In this idealization, a
total of 97 grid points on the surface (or middle surface) of the heat shield are free
to displace. Although five degrees of freedom at such points appear in the deter-
mination of stiffness, only one degree of freedom at each point — that which is
normal to the surface — is considered in dynamic response analysis.
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The procedure for obtaining the desired flexibility characteristics is as follows.
The stiffness matrix for the structure is constructed by the Bell General Purpose
Structural Analysis Program in the form

Lé"

(Symmetric)
\
!
'-—- — —
|
y 4 |
L
A*r ,Q"_
Lo, 4o,

(I11-1)

e

where x , ¢ and % are coordinate directions in and normal to the tangent planes at the
respective points and @ and @ are angular displacements in the x and ¢ directions.
Inversion of the above stiffness matrix yields

()

Vel

W

¢

e

J

| =
S (Symmetric)
o
g,k é“‘j L _ _
|
S}x 69'3 33’7 '__ -
|
Spx bpy Sp3 Sey 1 _
L_Sox Se;y Sey So¢ Se&'

(v )

Py : (I11-2)
FDZ
Mg

Me

where the S‘sare flexibility influence coefficients. The desired flexibility coefficients,
however, are only those which relate the P « to the &% 5 (€ Onx.

In the Bell General Purpose Structural Analysis Program, instructions are
provided which allow the assignment of the complete inverted stiffness matrix to
tape storage. The analyst then designates the rows and columns to be recalled and
thereby constructs the desired flexibility matrix, in this case Sux .

The idealization shown in Figure IlI-1 was also used to determine the mass
properties of the heat shield. Initially the surface area subtended by sets of grid
points was calculated, such as the area bounded by points 11, 12, 19, and 18. One-
quarter of this area was assigned to each corner grid point. In this manner the
surface area assigned to each grid point is found. Next, the ablator, face sheet and
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core thicknesses were determined for the assigned area resulting in assigned volumes
for each of these structural elements. These volumes were multiplied by the proper
density values to obtain weights. Table IlI-1 lists the assigned areas, structural
element weights and total weight.

The mass matrix[ M, to be used in the dynamic response study is easily con-
structed from Table III-1 by placing the pertinent weight, divided by & , for each grid
point on the main diagonal of this matrix. This approach, commonly labeled the
"mass lumping technique,'" results in zero-valued off diagonal terms.

C. LOAD-TIME HISTORIES

Forcing functions or load-time histories, F(t), were developed for each grid
point. Each loading curve is based on the impact pressure-time and wetted radius-
time histories shown in Figure III-2 for a chosen impact angle of p’ =15° and vertical
impact velocity of 35 ft/sec. A particular grid point load-time history was con-
structed by determining the time, 2‘,, , at which the grid point was "‘wetted" through
use of the wetted radius-time history curve and grid point coordinates. The pressure-
time history curve is entered at/ff to find the pressure decay for the grid point. Load
time histories are easily determined by multiplication of the grid point pressure-
time history by the pertinent surface area. Typical results are shown in Figures
HII-3 and III-4 for grid points 7 and 57 respectively. These results are conservative
in nature since the heat shield is to be subjected (theoretically) to a peak force which
is greater than that obtained if the actual rate of wetted grid point area were con-
sidered. In the latter instance a monotonic increase of force with time would occur
starting at some X,<Xg and peaking at some A >Xp. The peak value would be less
than that shown due to the pressure decay. This phenomenon is of negligible impor-
tance for grid points near the impact point where the radius of wetted area changes
rapidly with time.

The forcing function data are prepared as input to the dynamic response pro-
gram by providing the coefficients of the exponential function

F(t) = Ae*C (I-3)

These coefficients were determined by a 'least-squares' technique applied to the
basic pressure decay curve of Figure III-2. The most accurate results were obtained
by fitting exponentials to the time regions 0.001¢ t € 0.010 and 0.010 < €t 0.05.
These are shown on Figure III-2. The coefficient A in Equation III-3 represents the
assigned grid point area. It is noted that Equation III-3 is only used in the time
region X2 X, . For X< Zp F(t) is set equal to zero.
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TABLE III-1

NODE POINT COORDINATES — REVISED GRID

X
1 -72.21
2 -65.155
3 -58.100
4 -51.00
5 -43.0
6 -33.500
7 -24.000
8 ~10.550
9 -71.814

10 -64.798

11 -57.781

12 - -50.721

13 -42.764

14 -33.316

15 -23.868

16 -70.632

17 -63.731

18 -56.830

19 -49.886

20 . -42.060

21 -32.768

22 -68.676

23 -61.966

24 -55.256

25 -48.504

26 ' -40.895

27 -31.860

28 -22.825

29 -10.643

30 -65.967

31 -59.522

32 -53.077

33 -46.591

34 ~39.282

35 -30.604

36 -62.536

37 -56.426

38 ~-50.316

39  -44.167

40 -37.239

OOOOOOOO%

7.548
6.810
6.073
5.331
4.495
3.502
2.509
15.013
13.546
12.080
10.603
8.940
6.965
22.314
20.134
17.954
15.760
13.288
10.352
7.416
3.458
29.370
26.501
23.631
20.744
17.490
13.625
36.105
32.578
29.050
25.500
21.500
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(See Figure III-1 for Layout)

Z

160.066
163.065
165.710
168.031
170.254
172.375
173.952
175.238
160.066
163.065
165.710
168.031
170.254
172.375
173.952
160.066
163.065
165.710
168.031
170.254
172.375
160.066
163.065
165.710
168.031
170.254
172.375
173.952
175.243
160.066
163.065
165.710
168.031
170.254
172.375
160.066
163.065
165.710
168.031
170.254

41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55 .
56
57 .
58
59
60
61
62
63
64
65
66 .
67
68.
69
70
71
72
73
74
75.
76
77
78
79
80

X

-29.012
-20.785
-11.184
-58.419
-47.004
-41.260
-34.788
-27.102
-51.634
~-39.527
-34.077
-28.481
-44.153
-32.046
-27.086
-20.555
-15.672
-12.981
-34.336
~22.228
-19.205
-11.619
-5.948
-2.823
-0.736
-24.163
-12.055
-3.514
2.872
6.392
8.741

5.212

12.365
16.309
18.941
29.260
13.935
21.858

Y

16.75
12.0
9.083
42.444
34.150
29.977
25.275
19.691
50.480
42.582
37.240
29.784
57.139
48.463
43.461
34.759
25.368
17.663
65.524
53.680
50.474
40.366
29.460
20.512
10.546
68.047
56.836
45.456
33.174
23.094
11.877
72.210
58.100
50.928
37.170
25.877
13.309
66.016
56.404
41.167

z

172.375
173.952
175.008
160.066
165.710
168.031
170.254
172.375
160.066
165.710
168.188
170.696
160.066
165.710
167.967
170.894
173.050
174.227
160.066
165.710
167.089
170.502
173.009
174.375
175.282
160.066
165.710
169.578
172.415
173.957
174.980
160.066
165.710
167.972
171.176
172.915
174.067
160.066
165.710
169.301

1-5



T

_—TTTTT g T e——m gy ey Wy

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

X

26.266
29.141
49.343
34.734
39.672
42.971
61.121
46.797
55.115
69.278
72.210
58.100
44.135
30.170
19.870
9.570
0

Y

28.659
14.471
52.721
46.574
32.431
16.678
38.451
34.433
18.383
20.368

COoOO0OOCOoOOO
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TABLE III-1 (CONT)

Z

171.250
172.537
160.066
165.710
167.958
169.442
160.066
165.710
165.710
160.066
160.066
165.710
169.964
172.989
174.437
175.339
175.6
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Figure III-2, Presosure and Radius Time Histories
b= 15°, vy = 35.0 ft/sec
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Figure III-4. Forcing Function - Grid Point 57
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D. DYNAMIC RESPONSE

The dynamic response of the Apollo heat shield was determined by use of the
techniques described in Appendix B. This technique utilizes the natural modes and
frequencies of vibration of the subject structure.

A matrix iteration technique was used to determine the vibrational character-
istics. Mathematically, the eigenvalues (natural frequencies) and eigenvectors (mode
shapes) of the following matrix equation must be found.

08, 3EMIdud -t fuy (IMi-4)

The matrix[ g xx]is the set of flexibility influence coefficients described by Equation
(II1-4),5¢% is a column of displacements andf M Jlis the diagonal mass matrix con-
structed from the total weight column shown in Table IlI-1. The flexibility matrix is
reduced to 80th order by virture of the boundary conditions along the centerline of
the heat shield and bolt circle support points. The mass matrix is also of this
order. The first ten modes and frequencies were obtained from Equation (III-4) and
these are tabulated in Table III-2. Additional mode shapes are given in Reference

. The mode shapes for the first two modes are shown in Figures III-5 and I11-6
where negative modal values at each grid point are shown by the cross-hatched
areas. Relative amplitudes for the centerline grid points, using grid point 97 as the
normalizing station, are shown in the upper portion of each figure. Approximate
node line locations (points of zero displacement) are also shown. Examination of
these figures shows that only modes symmetrical about the heat shield centerline are
obtained. This is due to the fact that the flexibility matrix[ §..} was constructed on
the basis of symmetric loadings being applied to the subject structure. The
associated modal deflection pattern is reflected in the boundary conditions consistent
with the applied loadings. The calculated frequencies associated with each mode are
shown in Table III-2.

TABLE 1I-2
VIBRATION MODE AND FREQUENCY DATA

Frequency Generalized Generalized Generalized
Mode (rad/sec) Mass Stiffness Damping
1 592.0 19.80 6.94 x 10° 100.41
2 657.6 47.50 20.56 x 109 297.55
3 683.6 12.10 5.67 x 108 82.04
4 750.6 51.30 28.92 x 10° 418.45
5 813.9 187.00 123.84 x 109 1719.94
6 848.7 0.10 0.07 x 10° 1073.55
7 869.9 4.30 3.28 x 108 47.49
8 941.6 42.17 37.39 x 108 540.96
9 984.1 0.68 0.66 x 109 9.54
10 1112.0 128.39 158.76 x 10° 227.29
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The frequencies range from 592 rad/sec (94.3 cps) to 1112 rad/sec (178.5 cps).

The method of solution for dynamic response as described in Appendix B
assumes that the displacement of any grid point due to a dynamic load can be
obtained by a summation of products of mode shapes (relative displacements) and
generalized coordinates. That is

/l(xc-,%,t)s%_“ Ay (xe, g:) 64 (€) (III-5)
where & (x;  4;) is the jth normalized vibration mode shape evaluated at the
ith point and £ ;(¢)is the generalized coordinate in the jth mode. Use of Equation
(II-5) leads directly to generalized mass, stiffness and damping terms defined as

follows

N 2

M'ff:g« m; Ly (x; 59:)] (III-6)

K S M mI-7)

| it W3 Mi (

LW My

D.= $:i%4 (I11-8)

4 w

In the present application the summations extend from i =1 to 80, j =1 to 10.

Generalized mass, stiffness, and damping values associated with each mode are

listed in Table IMI-2. These values form the elements of the diagonal mass, stiffness
] and damping matrices in the equations of motion. (See Equation B-23, Appendix B.)

Although formation of the generalized mass and stiffness terms is straightfor-
ward, some discussion of the damping terms is needed. The coefficient §5 in
Equation (III-8) is defined to be the damping coefficient associated with each vibration
) mode and is expressed in terms of critical damping as

?3 : Z_Jf.c . where cc, =2 ‘ KJ Mf (1-9)

In the present application ¢; was assumed to be equal for all modes. The parameter
@ in Equation (III-8) is the frequency response of each generalized coordinate and is
unknown at the outset of the analysis. This frequency is easily estimated however

by averaging the response frequencies for the undamped case. For the present

l analyses, (& was assumed to be 110.0 cps.
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The matrix equations of motion (Equations B-23 , Appendix B) were solved by
the use of the Bell Matrix Iteration Time History Program. Program output consists
of time histories of the generalized coordinates and total grid point displacements.
Typical results are shown in Figures III-7 fo III-10 (additional results are displayed
in Reference 2 ). The generalized responses shown are to be expected since the
ratio of the period of the generalized force to natural period ranges from five to nine
approximately. Upon removal of the exciting forces at t = 0.050 seconds each
generalized mass-spring system oscillates at its natural frequency. The effect of
structural damping upon maximum displacement is negligible for g = 0.01 as shown
by the open circular symbols on Figures III-7 and III-8. An extreme case of damp-
ing, g = 0.40, shows a substantial decrease in amplitude and for g 5 the motion
is entirely damped-out before the excitation pulse has vanished.

Total grid point displacements for zero damping are shown in Figures (III-9)
for the centerline grid points 4 and 97. These are typical of the results obtained and
additional grid point time histories are presented in Reference 5. Examination of
the results showed that the frequency response during excitation varied between 100
and 140 cps approximately. During the period 0.05 £% < 0.080, when the external
forces are assumed to be zero, the frequency response in approximately 125 cps for
all grid points.

A comparison between static and dynamic response is shown in Figures II-10
and III-11 at selected time intervals for the centerline grid points. These figures
show that the deflections obtained by static response, in most instances, is greater
than that obtained by dynamic response analyses. Of particular interest is the fact
that as time increases the dynamic and static responses on the lower half of the heat
shield (negative coordinate) become closer in agreement. Thus, the dynamic effects
represent stress levels lower than the levels predicted in a static analysis. This
conclusion lends justification to the performance of static analyses and loadings of
the maximum acceleration, rather than for the apparently more critical loadings
earlier on impact. '
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IV. INSTABILITY ANALYSES

A. OBJECTIVES

The water impact condition produces membrane stresses throughout the heat
shield and it is conceivable that these stresses could be large enough to produce a
failure of the heat shield in an elastic instability mode. The objectives of the work
described in this section were to obtain the critical values of applied load for the
water impact design condition based on a discrete element approach to linear

instability analysis, modified by empirical correction factors.

The problem of determining elastic instability effects on the behavior of the
scalloped heat shield during the water impact phase is one which cannot be solved
through use of classical techniques with the expenditure of modest amounts of time
and effort. Developments of the matrix displacement method, however, permit an
engineering solution of this problem within the framework of this study.

The detailed work items in this area were as follows:

1. Perform instability analyses of a non-scalloped heat shield configuration

for fixed support at the bolt circle under a uniform load condition.

2. Define available classical solution to the above case.

3. Compare results of discrete element and classical solutions.

4. Perform analyses of scall'oped heat shield for water impact design
conditions.

Item (4) was conducted for the case of a 10° impact angle and wetted radii of 10,

20, and 40 inches, respectively. A description of these efforts is given in the follow-

ing paragraphs.
B. DESCRIPTION OF PROCEDURE

A detailed development of the present approach to elastic instability analysis
is given in Appendix C. The following is a review of the basic concepts of this

approach and its illustration by means of a simple problem.

It is possible to define, in connection with elastic instability phenomena, a

hierarchy of sophisticati‘on in achieving solutions. This hierarchy is as follows:
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a. Frame b. Idealization

Figure IV-1. Simple Frame for Illustration of
Instability Analysis Procedure
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(1) The middle surface direct stresses are evaluated in a membrane analysis.
This approach is common to '"classical'' methods of instability analysis.
It is not adopted in the discrete element approach because:

(a) The middle surface direct forces are as conveniently determined in
an analysis which includes flexure as in one which does not.

(b) It is possible for a singular stiffness matrix to be associated with a
purely membrane model of a structure which is designed to carry
bending moments.

(c) It is not convenient to input predetermined values of the internal
forces into the existing Bell buckling analysis program.

(d) In certain cases, the membrane stresses are significantly affected
by flexure.

(2) The middle surface stresses are determined in an analysis that includes
both flexure and axial behavior, but excludes finite deflection effects.
(The axial strain-displacement equations do not include strains due to
flexure.)

(3) The determination of middle surface stresses stems from an analysis
which includes finite deflection effects.

ap if by the problem shown in Figure IV-1a,
which is a simple frame. It can also be regarded, however, as the two-dimensional
counterpart of the shell problem. Figure IV-1b shows the discrete element idealiza-
tion. Only point 2 is free to move so that stiffness equations need be written only for
that point. Since instability effects are at first disregarded, in determining the axial

force distribution, we can write these equations as follows:

EL I
L l&c_u, - Q_LE__Q £ = %gu'
¥4 = AE ® _ \aET EL
A - e EX
M, = -LET , 4 4ET 4 Mm® - SCEL L wETL
Y ik - Y oWt SETe
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This may not always be the case, however. Furthermore, the above simple
problem represents the hemisphere, rather than the shallow spherical shell. To
examine this more closely, a series of analyses was conducted for the structure
shown in Figure IV-2 (with the same cross-sectional properties as before) and the
accompanying table was constructed to indicate the % improvement over axial loads

computed from "membrane theory"

P=10001b

P

2 sin (P

Figure IV-2, Frame for Numerical Analysis

TABLE IV-1
EXAMPLE FRAME RESULTS

Uncoupled Coupled
Membrane Membrane
Flexure Flexure %
Degrees Behavior Behavior Difference
45 707.0 702.2 0.8%
30 10000 980.0 2.0%
15 1932.0 1761.0 8.9%
5 5737.0 3008.0 47.5%
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where

®- (45 3 [(F+ 28 22 -2 (4 | (oo

Let us examine the improvement in the predicted element membrane forces
which is realized by utilization of the above formulation rather than the '""membrane"

theory which is represented by

P
F= 25 (rz - e)

Consider the case defined by

Px = 1000 1b
=0
My= 0

4 = 45°

8
From Equation IV-6 we have F, =10001b. Alternatively, using the previously

derived equations, we have

8 AE
Fx = T ™
AE [ ( AE , 12 E1) SEL :x \*
Feo= At [ 90) T - (<F) ]
-qT (> -7
F: = (' axm.‘) Px )
(- )
AL
h - 123
where l_(\.‘.____ALI

With L = 12 inches and with a square cross section, 1 x 1, the result is

Ff = 9a5§.1

Hence, the difference between this and the membrane solution is not significant. (0.5%)
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Interpretation of these results for the elementary frame structure enables
general conclusions to be drawn regarding the nature of discrete element idealiza-
tions of practical structures. Of primary interest is the demonstrated need for the
consideration of membrane-flexure coupling. The importance of this consideration
for shallow configurations of the example structure is apparent from the percentage
error data shown in Table IV-1. Accordingly, interelement coupling of membrane
and flexure behavior was incorporated in the instability analyses conducted for the
Apollo heat shield structure. A detailed description of the instability analysis method

developed is presented in Appendix C.
C. EVALUATION ANALYSES

Two classical problems have been solved with the subject discrete element
approach to elastic instability analysis in order to verify its accuracy. One of the
problems involves the prediction of the buckling pressure for a uniformly loaded
circular arch. The other is concerned with the prediction of the deflections and the

linear buckling of a pressurized spherical cap.

The first problem is illustrated in Figure IV-3. A circular arch, subtending
an angle at 120°, is subjected to a uniform normal pressure (p, 1b/in.). The arch is
fully fixed at the ends and possesses a cross-sectional area A, a moment of inertia I,

and is made at a material with a modulus of elasticity, E.

The arch was idealized as a system of 12 beam-~column elements (Figure IV-3).

The eigenvalue was computed to be

= 19.58 EAZ
v R

while the corresponding buckling mode was of the nonsymmetric form shown in

Figure IV-3b.

This problem was solved by Wempner and Kesti, using classical techniques,

in Reference 3. They obtain the solution

PC\’ = 14 E'-ﬁ%
R
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Figure IV-3. Deep Arch - Uniform Pressure
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which differs from the computed solution by less than 1%. Also, Wempner and Kesti

predict a mode shape which is essentially identical with that shown in Figure IV-3b.

The close agreement between the numerical and theoretical results in this case
indicates that the linearized discrete element method used here is indeed applicable
to this class of problem. In this case, where the subtended angle is relatively large,
the effects of large deflections (as characterized by terms of the type 1/2 @3;{ -
have only a secondary effect, and thus the linear theory is applicable. In very shallow
arches, these large deflection terms, can assume dominant importance and an anal-

ysis disregarding such effects may yield a very poor approximation.

In order to check the validity and applicability of the discrete element method
in the prediction of the buckling behavior of shallow spherical caps similar to the
Apolio heat shield, experimental results obtained by Kaplan and Fung (Reference 4)
were examined. They conducted a series of tests on shallow spherical caps subjected
to uniform hydraulic or pneumatic pressure. In these tests, not only the critical
pressures were obtained, but also the deflected shapes were measured in a number

AF Ao A~ v
VUL vadod U

Their Specimen 21 was employed for the purposes of comparison. The
principal dimensions and properties are indicated in Figure IV-4b. The cap is fully

fixed at the edge and subject to air pressure.

In the numerical analysis, only one quadrant of the cap is considered. The
gridwork used is shown in Figure IV-4b. For this shell, the critical pressure
has ‘been determined experimentally to be 34.40 psi. The deflected shape has been
measured and is presented in Reference 4 for a pressure of 0.581 ’R-,.. . Thus, in

the numerical analysis the loading has been taken as

0.581 x 3\“’.“* = \C\.‘\? F.S-\u

Using this pressure, the deflected form shown in Figure IV-4b was determined.
The comparison between the experimental and theoretical results is excellent. In
the same analysis an apparent buckling pressure of 63.1 psi was determined by an

eigenvalue routine. Classical linear shell buckling theory yields a critical pressure
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(8.052 psi Uniform Pressure)
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// R = 19.558 in. 0.413 in,
a. Section A-A
b 4 in. E=6.5x 10—61b/in.2
z " I= 0.32
-
'y
l b. Planform Geometry and Idealization
Deflection _ Kaplan ar;d
(in.) Fung (Ref. 4))//‘*'\
0.01 A — I —
/] 1
L~
0
4.0 2.0 0
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Figure IV-4. Spherical Cap - Uniform Pressure
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Gerard and Becker (Reference 5) have examined the comparison between
experimental results and classical linear theory for this class of problem. Based
upon the available test data, it is demonstrated that, due to the effects of initial
imperfections and large deflections, the classical factor of 1.2 must be reduced.

The amount of the reduction is dependent upon the R/t ratio, and for the present

case of R/t = 362, the reduction factor is approximately 0.42. When the case of the
sandwich heat shield is considered subsequently, a similar reduction factor is applied
to the values obtained by the linearized numerical analysis to account for the effects

of large deflections and initial imperfections.
D. ANALYSIS RESULTS
1. Idealized Heat Shield - Uniform Pressure

The first instability analysis, which was performed upon a structure
representative of the actual Apollo heat shield, was intended to determine the
critical uniformly distributed pressure which causes buckling of a spherical sandwich
cap. The cap has the same dimensions, etc., as the heat shield except that the sand-
wich face sheets have a uniform thickness of 0.08 in. For the purposes of this
analysis only one quadrant of the cap was considered. Full details of the cap and the

gridwork are given in Figure IV-5.

The use of the matrix instability analysis concepts described in Appendix
C take into account the simultaneous action of membrane and flexural stress sys-
tems, but the effects of flexural deformations on the element membrane strain-
displacement equationsmare neglected. If then, in a problem, the membrane stress
state undergoes a simple linear change in magnitude, but is not redistributed as the
external applied load is varied linearly, then the critical buckling load of a system
may be estimated reliably (ignoring large deflection terms) by factoring any applied

load by an eigenvalue determined for that load level.

In the case of the spherical cap, the bending deformations cause redistri-

butions of the membrane stresses. The redistributed membrane stresses alter the
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bending stiffness, and thus it is necessary to iterate at each load level to determine
the actual stress distributions. In order to find the actual value of the buckling load,
it is therefore necessary to reach the situation in which the eigenvalue is unity;

i.e., no extrapolation is required. The applied load is then the buckling load.

This condition may be reached by simple trial-and-error, but a more
sophisticated approach is desirable. For the present case, a simple graphical tech-
nique was used initially, and based upon these results a mathematical approach was

developed.

When the spherical cap was subjected to a uniform pressure of 10 psi, the
apparent buckling load was computed as 84 psi (see Figure IV-5). Application of
20 psi yielded 81 psi, etc. The curve in Figure IV-5 shows the various applied loads.
The intersection of the curve and the line \ = 1 indicates the critical value of the
applied pressure as 47.0 psi. As discussed previously, this value must be reduced
by a suitable factor to take account of large deflection effects. Curves giving this
factor, presented in Reference 9 are based upon the radius-to-thickness ratio. For
a sandwich panel, however, the definition of the thickness presents a problem, since
face, core, or effective bending thicknesses may be used. Fortunately, in the region
covered by these parameters, the curve of the reduction factor of Reference 4 is
relatively flat and a mean value of approximately 50% may be selected. The critical

uniform pressure for the idealized heat shield then becomes

Fc‘-o = O.S K\*‘7-O ) 23-5 P;S.\ll

2. Actual Heat Shield - Water Impact Cases

In view of the iterative nature of the instability analysis it was decided
to consider initially only three actual water impact cases. These are all for an
impact angle of ‘b =10° and for the three radii of wetted area: r = 10", 20", and 40".
As discussed previously, the instability analyses utilize a considerably coarser
gridwork than that used for the basic design analyses. The modified gridwork, which
is shown in Figure IV-6, is based upon the polar grid of the design analyses
(cf., Figure III-5) and has approximately 150 degrees of freedom - the limit of the

current instability program.
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Figures IV-7 to IV-9 present the results of the three instability analyses.

The buckling pressures determined from these curves are as follows:

Radius 10" 20" 40"
Pressure (psi) 1179.0 396 210

In the previous section, the concept of a reduction factor which accounts
for the large deflection effects not included in the above analyses was introduced.
The precise value of the factor is questionable but from data given in Reference
it is estimated to be 0.5. From MSC data for the case of 35 ft/sec water impact
velocity the pressures experienced at the appropriate radii can be compared with

the above values after factoring by 0.5.

10" 20" 40"
Factored Pressures 589.5 198.0 105.0
Estimated Pressure 273.0 151.0 80.0
(MSC)
Safety Factor 2.16 1.31 1.31

From these figures it may be seen that an overall instability failure of the Apollo

heatshield is not predicted.
E. FINITE DISPLACEMENT CONSIDERATIONS

Extension of the instability analysis to include finite deformation and finite
displacement effects could be expected to improve significantly the prediction of
shell behavior for certain shallow configuration and applied loading situations. Such
an extension could be effected within the framework of the instability analysis pro-

cedure developed herein.

The behavior of a structure idealized as an assembly of discrete elements is
characterized by the nature of the discrete element representations. Accordingly,
in the development of a nonlinear formulation, attention may be focused on the

derivation of appropriately nonlinear discrete element representations.

A nonlinear mathematical representation for a structural discrete element is

most easily derived using the principle of stationary potential energy in conjunction
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with the Rayleigh-Ritz procedure. In order to account for finite deformation and
finite displacement effects, it is necessary to retain selected nonlinear terms in the
element strain-displacement relations. For thin shell and slender prismatic struc-
tural components it suffices to include second order terms in the transverse dis~
placement functions. The retention of quadratic terms in the strain-displacement
relations results in a quartic potential energy functional. Construction of displace-
ment functions if accordance with the Rayleigh-Ritz procedure and execution of the
variation of the quartic potential energy yields a discrete element representation in

the form of a set of nonlinear algebraic equations which malg be written as:

(R = Dhel{ad* Do fae + D fad

where

{Fe} is the vector of forces applied to the element at the node points.
{Ac} is the corresponding vector of node point displacements.
[k e] is the familiar element stiffness matrix.

\_v\‘;\ is defined as the '"'first order element incremental stiffness matrix".
T 7 Its elements are linear functions of the element node point displace-
ments.

[“le] is defined as the ""second order element incremental stiffness matrix".
Its elements are quadratic functions of the element node point displace-
ments.

It is instructive to exhibit the incremental stiffness matrices for a frame

discrete element appropriate to the elementary frame structure considered

previously (Figure IV-2).

|
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The approach to incorporating finite deformation and finite displacement effects
outlined above is readily applicable to the thin shell elements appropriate to the heat
shield analysis as well as the frame element considered here. A further important
feature of this method is that the numerical algorithm required for the prediction of
behavior is conceptually unchanges though revisions might be necessary to obtain

favorable convergence characteristics.

In a review of the work described earlier, Budiansky and Sanders (Reference 18),
strongly urge the performance of nonlinear deflection analyses and present a theoret-
ical extension of discrete element concepts to accomplish this end. Their suggestions

parallel the above procedures to a significant extent.
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V. DISCRETE ELEMENT PROPERTIES

A. HISTORICAL BACKGROUND

In order to place this portion of the study in proper perspective, a brief
historical review is given of the development of the discrete element approach to

structural analysis.

The concept of physically idealizing complex structures as assemblies of
discrete structural elements has been known and utilized for over 100 years, in the
form of procedures for truss and frame analysis. The potential value of this approach
as a means for the analysis of structural continua such as plates and shells remained
unrecognized until the early 1950's. Then, a large number of papers, were published
which clarified and refined the concept of discrete element structural idealization
and generalized the analysis procedures associated with such concepts. A landmark
paper in this connection is that by Turner, et al (Reference 6). Numerous develop-
ment efforts were initiated to construct discrete element formulations suitable for

realistic idealization of a wide variety of practical structures.

Many mathematical models were derived for a number of discrete structural
elements using several distinctly different approaches. The single aspect common
to the various investigations was a general inattention to the convergence character-
istics of the discrete element representations put forward. Most element repre-
sentations were found to exhibit satisfactory convergence while others proved use-
less in the absence of favorable convergence characteristics. Through a heuristic
process, general analysis capabilities of broad applicability were developed by

building up computer program libraries of the best discrete elements.

In 1963, Melosh (Reference 7), laid down guidelines, based on established
principles of structural mechanics, for achieving convergent discrete element
representations. The definition of procedures for developing element representations
within the confines of these guidelines proved to be an elusive goal. As a consequence,
the huge strides made in the development of additional and improved discrete element

representations continued to stem from the heuristic process.
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Only recently, in October of 1965, several investigators (8, 9, 10) have presented
preliminary reports defining general systematic procedures for deriving convergent
representations for a broad class of discrete structural elements. Those which are

pertinent to heat shield analysis will be discussed subsequently.
B. SANDWICH ELEMENT

Prior to the initiation of this study, stiffness equations for the triangular
sandwich element (Figure V-1) had been formulated at Bell Aerosystems Company.
This element consists simply of upper and lower faces which are the conventional
triangle in plane stress (Reference 6), separated by a core which carries only vertical
shear stress. By combining these components to form a single element, including
the condition that normals at a corner point remain normal during deformation, one

obtains the desired stiffness properties.

Since the heat shield is indeed a sandwich structure, it would appear that this
element would furnish a superior representation to that given by the isotropic plate
elements. In order to test this conjecture,analyses of a quadrant of the heat shield
were performed for two gridworks as shown in Figure V-2, a coarse mesh con-
sisting of 28 sandwich elements and possessing 64 degrees of freedom, and a refined
mesh consisting of 66 triangular sandwich elements and 156 degrees of freedom.

This heat shield representation is assumed to have fixed support around the periphery
along the bolt circle.

In both analyses, the face thickness was 0.008 in. and the core thickness was
2.00 inches. The modulus of elasticity for the faces was 30 x 106 psi while the core

shear modulus, G¢, was taken as 1.8 x 104 psi.

For comparison purposes, a refined gridwork analysis was performed utilizing
quadrilateral and triangular plates, in the same manner as was described in SectionIl.
A comparison of the results of all three analyses is shown in Figure V-3, in the form

of the centerline radial displacement profiles.

Since the conventional plate representation is known to yield essentially con-~

vergent results for the heat shield for this degree of gridwork refinement, it is
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Quadrant Triangular Sandwich Panel



apparent from Figure V-3 that a significant improvement is yet to be gained, through
gridwork refinement, in the triangular sandwich element representation. On the other
hand, the substantial improvement obtained by advancing the gridwork from coarse

to fine indicates that the triangular sandwich element will be capable of yielding

accurate results with sufficient refinement.

The triangular sandwich element differs from the conventiogal plate element
principally in the inclusion of a transverse shear flexibility. Consequently, the fore- -
going results prompted an examination of the relationship between core shear rigidity,
Gi’ and gridwork size for a known solution. The problem chosen for examination was
the simply-supported, uniformly loaded square plate shown in Figure V-4. The faces
are taken to be 0.005 in. with a modulus of elasticity of 107 psi. The core depth is

assumed to be 1.0 in.

Due to symmetry, only a quadrant of the plate need be analyzed. Three grid-
works of elements have been utilized - 4, 16, and 64 elements. Analyses were per-
formed for three values of core shear rigidity: 34,000 psi, 500,000 psi, and 3000 psi.
The lowest value is the magnitude to be anticipated of conventiionai forms of sandwich

construction. The high value is representative of an isotropic shape.

The results of the analyses, in the form of the center deflection, are plotted as
a function of gridwork refinement. Also shown are results obtained by means of the
classical solutions derived in Reference 11. It is seen from these results that a good
level of agreement exists for the weak core shear rigidity, while the agreement is
very poor in the modeling of an isotropic plate. Agreement for the latter is improved
by refinement of the gridwork but whether or not the refinement will lead to a solu-
tion convergent upon the analytical solution is uncertain. Clearly, convergence will

occur with only an inordinate degree of refinement.

Thus, it is seen from the foregoing results that the triangular sandwich element
furnishes workable results for a reasonable number of elements when the structure
indeed evidences sandwich behavior. A sandwich form of construction may or may
not evidence "sandwich behavior", i.e., significant shear deformation, depending upon

the span, loadings, etc.
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Figure V-4. Deflection Predictions versus Gridwork Refinement for
Various Core Shear Rigidities
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- The use of plate elements based on conventional isotropic plate flexure theory,
which neglects shear deformation, has been justified by the view that the Apollo Aft
Heat Shield has a relatively rigid core and a large span, so that the shear deforma-
tions are negligibly small when compared with those due to bending. In order to
provide a quantitative estimate of the error produced by these assumptions, the case
of a square sandwich plate was examined. The cross-sectional dimensions are
taken to be similar to those of the Apollo Aft Heat Shield and are given in Figure V-5.
Using curves generated in Reference 12 for rectangular sandwich panels, the maxi-
mum (central) deflections for square panels of various sizes were obtained and com-
pared with the classical values for isotropic plates having the same bending stiffness.

The percentage error is plotted in Figure V-5.

For the heat shield, which is equivalent to a square plate of about 100 inches

side length, the error is approximately 0.5%.

/
A convenient rule is to regard the error as negligible for D > 100 where

F
2
'hlzl_’__Q}

<37

P B* Ds

shear stiffness

D,
D

flexural stiffness

b

panel width

[
The curve of DF for various panel widths is plotted on Figure V-7. It can be
!
seen that for DP = 100 the error is approximately 2%.

C. INTERELEMENT COMPATIBLE ELEMENTS

As noted previously, rapid strides are being made in both the development of
discrete element stiffness properties and in the definition of appropriate bases and
concepts for the development of these properties. It is felt that these activities
point towards idealization concepts which meet all of the needs of heat shield anal-
ysis. The numerical evaluation and coding of these elements, however, has not

advanced sufficiently far at this time to permit analysis of the Apollo Aft Heat Shield.
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It is believed that discrete element idealizations for matrix displacement
analysis should conform to the requirements of compatible displacement. If they
meet these requirements, then it is assured that the displacement predictions will
be smaller than the convergent solution and that the solution will monotronically
approach the latter as the gridwork is refined in a consistent manner. Since discrete
element formulations for matrix displacement analysis are generally based upon
assumed displacement functions, there is no question regarding the satisfaction of
compatibility within the elements; the problem is one of so-contriving the respective
element displacement functions so that the complete model satisfies compatibility.

That is, interelement compatibility must be achieved.

The element discussed previously - the triangular sandwich element - satisfies
the interelement compatibility conditions. As shown, however, a very large number
of these elements is necessary for an accurate representation. Thus, a more effi-
cient approach is to utilize elements whose theoretical basis corresponds to that of
conventional flexure theory, modified to account for the difference between mem-

brane and flexural stiffuess. Suc

From the standpoint of geometric representation, two geometric forms are
essential - the triangle and the arbitrary quadrilateral. Advanced representations
have recently (October 1965) been put forward for both of these forms. The advance-
ment which the new quadrilateral and triangular plate flexure elements represent
stems from a careful construction of the element displacement modes so as to
satisfy completeness and geometric admissibility requirements with respect to the
whole structure. Satisfaction of these requirements guarantees that the mathematical
model represents a stiffer structure than the actual structure in the sense that it has
a higher potential energy than the exact solution. Furthermore, as the number of
degrees of freedom are increased (e.g., grid refinement) the solution will converge

monotonically toward the exact solution.

Suitable displacement behavior is described in the case of the quadrilateral
element by defining a complete cubic polynomial mode shape over each of four zones

(Figure V-6).
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A total of ten coefficients are associated with each zone. Admissibility require-
ments across zone interfaces reduce the total number of undetermined coefficients
to sixteen. This is precisely the number needed to establish geometric admissibility
across element interfaces. This is clear since the displacement along any line is
cubic in a coordinate measured along the line and is, therefore, completely specified
along the boundary, by the corner point displacements and slopes. Thus, displacement
compatibility is established by the interelement matching of these quantities. The
four undetermined coefficients which remain are needed to satisfy slope continuity
across element interfaces. The slope along any line is quadratic in a coordinate
measured along the line and requires, therefore, the specification of slope at one
point along an element boundary in addition to the two corner points. The boundary
midpoint are selected for computational convenience. The resulting quadrilateral
flexure element has sixteen degrees of freedom manifest as one displacement and
two rotations at each of the four corners and one roiation at the midpoint of cach

boundary.

Completion of the formulation is effected in accordance with the well known
Rayleigh-Ritz procedure. Substantial algebraic convenience is realized by the use
of the oblique element coordinate shown in Figure V-6. Numerical evaluation of this
advanced quadrilateral flexure element is being pursued at Bell Aerosystems

Company.

Complete, admissible displacement mode shapes for a triangular plate flexure
element have been constructed using a procedure similar to that just described for
the advanced quadrilateral element. As before, complete cubic polynomial mode
shapes are assumed over zones of the element (Figure V-7). Continuity requirements
across zone interfaces reduce the total number of undetermined coefficients to
twelve. Arguments identical to those given for the quadrilateral element associate
these coefficients with the nine corner point displacements and rotations and a

rotation at each of the three boundary midpoints. This advanced triangular element
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Figure V-7. Triangular Plate Flexure Element

Report No. 7218-933004 p V-13




will, like the quadrilateral element, be incorporated into the Bell general structural

analysis program.

In conclusion, it is important to note that, not only are these triangular and
quadrilateral flexure elements interelement compatible among other elements of
their respective types, but quadrilateral elements may be interspersed with triangular

elements without violation of interelement continuity requirements.

Report No. 7218-933004 V-14



VI. ANALYTICAL SOLUTIONS

A. GOVERNING EQUATIONS

During the period when intensive efforts were directed toward the resolution of
critical problems in the design of the Apollo heat shield for water impact conditions,
the validity of the alternate paths toward numerical solutions for these problems was
questioned. Thus, it becomes evident that classical solutions to simplified (but
pertinent) problems were needed to verify that numerical analysis approaches. .
Furthermore, classical solutions can give a rapid, if approximate, measure of the
quantities sought. The availability of convenient solutions will facilitate rapid analyses
in the event new critical problems arise, and provide a means for preliminary design
of future heat shields. With these considerations in mind, a portion of the work was
devoted to the development of analytical solutions for a variety of heat shield pro-
blems. For the Apollo heat shield water impact cases, the loading is not axisymmetric.
Also, the effects of a sandwich type of structure must be included. As discussed
elsewhere, the shear deformations of the sandwich core may be neglected (in view of
the comparatively large span) and the sandwich solution is then similar to that for a
uniform plate except that the membrane and bending stiffnesses differ and are repre-
sented by the parameters D, and D; .

With these considerations, the governing differential equations are

% (E L Dw La(w = (VI-1)
v () + & o V() =e
w(w) - ! a(f_s__)=.£. (VI-2)
v (¥) - a7 v b/~ ab;
a
where F is a stress function, ,Q* =% Ds , and the other symbols are defined in

Da
Figure VI-1. These equations were derived by E. Reissner (References

The homogeneous solutions to Equations (VI-1) and (VI-2) are taken as:

b

T: B..\nrx - Boa bei x «+ Aos +

-] - (VI-3)
Z_ [B‘ bQY‘ ‘X"Ba \zei“ X+ A X JCosY\G
wf
_F_k. R 3 % EB,; bevr ¥ + Bo, ber x +
D o (VI-4)

i [Ba ber, X +8B, bei X+ Ay x“] Cos “es

It is see.;;'that form {0 there are basically four arbitrary constants to be deter-
mined. These can be obtained from the following boundary conditions.
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(a) For clamped edge
no axial displacement
i
w cos@ = W =0 (VI-5)

no radial slope

o w' Jw'
X ws@ = 2w _ VI-6
S Cc(ﬂ " = O ( )

- TFMF (VI-7)

A oF L o U ! (V1-8)
= v 5 Y ¥ e T M5 =o

(b) For hinged edge
Equations (VI-5), (VI-7), and (VI-8) remain while Equation (VI-6) is re-
placed by the condition of no radial bending moment. This is in the form of Equation
(VI-9).

no radial bending moment

Il 2 i ) * i
My S e £ s dul g Vi)
av ¥ oov Yt ) e*

In the above equations the primes indicate that all the variables are expressed
in nondimensional form.

The development of the particular solutions for W and F has presented some
problems which were not anticipated and which have necessitated the trial of a number
of different approaches before a satisfactory solution could be obtained.

Initially the loaded annular sector of FigureVI-le was expressed in the form of
a double Fourier Series, one of which was then transformed into a power series.
Although a solution to the governing differential equations for this loading function
could be obtained, comparisons of its degenerate form for the uniform load case with
known solutions indicate that the solution was not valid.

Eventually the difficulties were traced to the double Fourier, series which is
apparently not valid on a shallow spherical shell. For a shallow shell Bessel Func-
tions must be used and hence, the loading function has to be expressed through a
Fourier-Bessel series.
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This new solution is considerably more complex than the simple Fourier, series.
Full details of the solution with results will be published as a supplement to this
report.

B. HEAT SHIELD WITH OVERHANG

The analytical procedure presented above can be extended to obtain solutions to
a heat shield with overhang. Such a case is defined in Figure (VI-3). The heat shield
shown is supported along a circle of radius a. The portion of the shell inside the sup-
porting circle is designated region "I'' while the overhang portion is called region "II".

The governing differential equations for this case remain the same as Equations
(VI-1) and (VI-2). The homogeneous solutions to Equations (VI-1) and (VI-2) in Region
(I) also remain of the same form as in Equations (VI-3) and (VI-4). In the overhang
portion, however, no simplifications could be made except that one constant in
may be disregarded due to the fact that the derivatives of £ only are concerned.
Therefore, the homogeneous solutions in Region (II) are

. <o) @) (o) )
(w“ )II - EB"' ber x-Boa "bei ¥ + Boz kev x -Boy Kei x

o T
+ Aol Lo x ....AL:;)Q— Z [Bl beY,‘X —Ba bein X
wag

+ B Kewy x =~ B Kei, x + AY 2"+ AT

(VI-10)

(> D)
-QDDm éBO:L berx 4 Bol bei x + Bo"- Kev x
s

H

(F,’\ )a

) o0
+ bo3 Kei x +Aoa. Anx + Z_ r_ 3_ bef,“l

Nn)
1) ) .
B™ bei x + B Kevr,x + By Kein x
() ) _ -
FA X AT XM ) osme §
(VI-11)

From Equations (VI-10) and (VI-11), it is seen that there are ten arbitrary
constants for the case n = 0 and twelve constants for n 0.

To obtain the particular solutions, three loading cases are considered. These
are (See Figure VI-2).
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Figure VI-2. Analysis Conditions for Overhang Case
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(1) The water impact area inside region (I)
Yi & O~
Y, £ O~
(2) In both regions (I) and (II)
Ni € O
Yo 7 O0
(3) In the overhang portion only
Yi 20
Yi< Yo <Oy

For the particular solution the same approach is used as for the shell without
overhang.

The boundary and continuity conditions needed for solutions are
Atr=a

no axial displacements in both regions

/
Wery =0 (VI-12)
Wy =0 (VI-13)

no circumferential strain in both regions

(€e)r =0 (VI-14)

(€edr =© (VI-15)

no meridional displacements in both regions

! -
Uy = O (VI-16)

4
Ui, = U,y (VI-17)
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radial slopes are continuous

awu:) - 9 W) (VI-18)
or oy
radial moments are continuous
/ /
(Mrr): = (Mv‘r,n (VI-]_Q)

Atr=a.h

no radial bending moment

(Myv), =0 (VI-20)
boundary shear must vanish
i_ 2 2 My
- & YO = Vi-21
(w- < =5 o ( )

no radial membrane force

(Ney )y 20 (VI-22)

no shear membrane force

[ as ¢ L R
\(MNyvel) =0 (V1-23)

These above conditions are satisfied for the determination of the twelve
arbitrary constants for the case n .# o. For n = o there are ten arbitrary constants,
the conditions of Equations (VI-17) and (VI-23) are disregarded.

The solution procedure from this point on is essentially the same as that
described for the case without overhang.

C. SOLUTION FOR UNIFORM THERMAL FORCE AND UNIFORM THERMAL
MOMENT

Under the conditions of uniform thermal loading the governing differential
equations (Equations VI-1) and (VI-2) reduce to the homogeneous form

V‘# F' + é %l:- V"w' =0 (VI-24)
vtw' “&;Ls'. vk =0 (VI-25)

Since the current problem is axisymmetric the homogeneous solutions can be written
as
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H . .
W= C,bec x = cCy berx + ¢y

(VI-26)
F'= -1/&%52-; [ciber 2z ¢ ca bea 2] (VI-27)

It is to be noted that, as yet, the effects of the thermal loading have not been
introduced. In the case of uniform thermal loading, stresses are only introduced by
restraining the thermal deformation and hence the magnitude of the thermal loading
appear only when the boundary conditions are considered. The shell is fully fixed at
the bolt circle. The boundary conditions are then

i .
w=o , €e=6 , .o at L=
where the circumferential strain Cg is given by
- - ,u 2F
e o~ Dm [ aT" or “]
azr M oS5 N
= - — = ] -
L 2

and N_ is the thermal force.

It is to be noted, as was to have been anticipated, that the thermal moment

-J—\,--. ke

‘A“
Wil Ades noL appear CAp.llbll..ly in this case.

The three relevant constants ¢y, €2, Cgare then obtained by the solution of the
simultaneous equations as

O | N . >
¢ - bl ~ bes' o
— W' S_’: . O y H a K]
bev T * bei ¢ - pen t bevr %-5:.‘-[(5"%) +(h,%)a.]

[ - N
. ‘bev T (VI-29)
AP . c
bei' T ‘
Q3__b¢?*-ci+‘btkl Ca

For the case under consideration the followmg numerical values were used.
ag=115.6 , Dg= p4aqa3x o0 Dw.=oquaa.xw ,a= ST 2
M = |got+‘|b. y N« = 3%a26 |b. /“h

Thus L= 4 VSR o 453 | %= 0,3
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_ -3 - - -a -a
S,z rduwtorc , €% 2,355 X0 ,C3=7,1072 X010

‘Central Deflection = @ (c¢,+¢c3) = 1.0882 in.

A complete profile of the displacements along the axis of symmetry is given in
Figure

At center of heat shield .
Nvz Y28 .o, (4% ber'z hew = 5T-C6 IbSim.
Me = - %—Cu' beilo + Mu = 1878 +1504% = 26 lu. /1w fia.

For the chosen section, the details are shown in the sketch.

' / / {{é 4 4 / / / The position of the neutral axis is

E = 2.46 x 105 1.84 in. 1.953 from the lower surface.

Using the calculated membrane force
0.008 in. “v = 57.66 lb/in., the stresses in the
/> \ ablator and steel faces are

2.0 in. “Om,, = V3.70 PS* (Compressive)
é-. =} —LO.OOS in. ‘T"\‘- 2 1T0%,\ psa (Compressive)
~E = 3,06 x 107 ;

The bending moment My = 261b/in./in. produces the following stresses.

In lower steel face s = 1025,7 pst (Tensile)

In upper edge of ablator G5 = 82.0 ps- (Compressive)
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VII. CONCLUDING REMARKS

The discrete element approach to structural analysis has been shown to be an
appropriate means for the analysis of the Apollo aft heat shield where the seemingly
regular geometry would appear to make attractive classical solution approaches. In
the actual circumstances, the analysis must account for irregular loadings, tempera-
tures, and a wide variety of possible support conditions. More significant perhaps is
the irregularity of the cross-sectional dimensions as produced by scalloping of the
sandwich faces and the variable thickness ablator, and by the portion of the heat shield
which overhangs the ablator. All of these effects are treated directly by means of
discrete elements of triangular and quadrilateral form.

Further developmental work in connection with discrete element properties is
nevertheless indicated. Two promising directions have been found. In one, sandwich-
type elements can be employed. Presently, this approach required implementation with
respect to the refinement of the idealization, wherein a very much larger number of
degrees of freedom must be utilized. Also, the available element relationships which
are derived on the basis of equal face thicknesses, must be extended to account for a
load carrying ablator attached at one face.

It should be additionally noted that if design requirements involve the determina-
tion of peaked stresses, an approach based on finite elements (or finite differences)
will be inadequate, or in the least inefficient, if the problem is approached through use
of a single idealization of the complete heat shield. Logically, a gridwork of reasonabie
refinement should be employed to obtain the overall stress and displacement pattern.
Then, a high degree of refinement should be employed in the idealization of an isolated
portion of the structure, where the determination of peaked stresses is desired. Pro-
cedures for this type of approach are easily defined, but have not been properly tested
in practice.

With respect to buckling, a finite deformation-finite displacement formulation
would be a logical step toward improved prediction of behavior of the heat shield. The
present instability analysis capability exhibits complete membrane-bending coupling
between discrete elements of an assembly. With reference to a single discrete element,
however, only the effect of membrane action on bending stiffness is considered. This
latter procedure is a conceptual extension of the linear formulation which allows the
prediction of critical loads for structures which experience small deformations and
small displacements prior to buckling.

Although the finite displacement formulation involves major modification of the
instability analysis capability, it could be expected to significantly improve the predic-
tion of behavior. As stated by B. Budiansky and J. Sanders as a result of their
examination of certain phases of this Apollo heat shield structural analyses (Reference
18) "should a static nonlinear analysis be done? On the basis of some estimates we
made we concluded that one should be done.” In this same report, emphasis is given
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to the view that since a nonlinear analysis is feasible,it is important to perform it and
dispense with the empirically-modified linear result, since the empirical factor is of
ill-defined reliability.

As a final comment, the determination of thermal stresses in the heat shield is
a subject requiring more extensive and detailed attention that it could be given in this
effort. Classical solutions for significant thermal stress situations in shallow shells
are virtually nonexistent. This being the case, proper verification of the adequacy and
special safeguards to be taken in a discrete element approach is difficult to achieve.

In a specific, related, problem the extremely high predicted thermal stresses
for the heat shield are indicative of an unrealistic definition of the support conditions.
The elastic nature of the support in the radial direction in the plane of the bolt circle
should be taken into account. Also, no recognition has been given to the existence
of initial assembly stresses. It is known that the ablator is applied to the heat shield
at a temperature other than ambient room temperature. Thus, atroom temperature,
thermal stresses are produced in consequence of the differences in expansion coef-
ficient of the ablator and the sandwich.
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APPENDIX A

MATRIX DISCRETE ELEMENT ANALYSIS PROCEDURE -
LINEAR STATIC ANALYSIS

1. GENERAL CONCEPTS

The purpose of this appendix is to develop, from basic principles, the concepts
of elastic linear, discrete element structural analysis (10)(16), as applied to static
loading conditions.

In this method of analysis, structures are idealized as systems of connected
discrete elements. The points of connection are called "reference' or '"node' points.
Each class of discrete element (bar, triangular plate, beam segment, etc.) possesses
a finite number of connection points, the specific number in a given case being
dictated by the number of parameters needed to define the variation of the edge stress
systems acting upon the element. A hypothetical element, a rectangular plate seg-
ment of a plate component, having four reference points, is shown below. (Figure A-1)

VA
Y
/"-:\
X
1 3

N
N
™
\\3*

For any such element, it is first necessary to derive relationships between the
displacements {Ae'i of the boundary points and the forces { F } acting at these
points. The node point forces are statically equivalent to the stresses that actually
exist on the edge areas subtended by the point. On the basis of assumptions as to
element deformational behavior, it is possible to establish the desired relationships
in matrix form, as

[Fi=[k]) {acy+{7"§ . (A-
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where
[ K] is the "element stiffness matrix",

{ Aei are the displacements of the points on the element (node points) which join
with the adjacent elements or with the supports,

{F§ are the stress resultants, or equivalent forces, at the element node points,

{ F "} are the '"thermal forées'.', representing the effect of a temperature change
with the element.

Methods for the formulation of the terms of this equation are detailed in
Raferences 11 and 16.

Once the element relationships have been evaluated, the elements are assembled
to form the complete analytical model of the structure by joining all elements at their
respective juncture points and applying, in the process, the requirements of juncture
point equilibrium and compatibility. The theoretical basis for this operation is as
follows.

The components of internal loads{ F § and net external 1oads{ P f at each point
are related by equilibrium requirements; i.e., JFx* R, etc. The respective coordinate
displacements of the corner points of all elements meeting at a point are equal, a
requirement that satisfies compatibility. The result is that the stiffness matrix [K]for
the complete structure can be assembled by merely adding element stiffness coefficients
having identical subscripts. This yields a set of algebraic equations:

Pl (k] {a}e {P"} (A-2

- The matrix[ K J will henceforth be referred to as the "master" stiffness matrix.

Displacement boundary conditions can be readily imposed by assigning the pertinent

A 's their known values (usually zero). The matrix [KJwill be altered in the process,
and, taking note of this by utilizing the subscript R, the solution to the altered
Equation (A-3) becomes (if matrix inversion is utilized),

{Aai : [Ka]"de -3 PU} =L§ J{‘l P.J*{P,"}} (A-3)

where 2 § Srepresents the set of displacement influence coefficients. This is the
equilibrium static solution. The displacement influence coefficients are directly use-
ful for subsequent dynamic analyses.

To obtain the stresses from the displacement solution, the displacement vectors
for the respective elements 2 A,} are first selected from the total column of displace-
ments. Then, each such vector is multiplied by the associated stiffness matrix (Equa-
tion A-1) to determine the node point forces } Fe}. In an additional step, the node
point forces can be transformed into the corresponding stresses. It has been found
more efficient, however, to form at the outset direct relationships between the element
stresses and the node point displacements, as follows:
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fog3=[51fa) +f{o=y (A-4)
where 205 }are the stress values which characterize the distribution of stress within
an element,{O‘: "}are the stresses corresponding to the thermal forces, and [51is
known as the "element stress matrix''. The procedure followed, therefore, is to
establish, first, the stress matrices at the start of a computation. When the displace-
ment vectors for the respective elements 2 A, 3are evaluated, they are premultiplied
by the corresponding element stress matrices to obtain the solutions for stress.

2. BELL GENERAL PURPOSE STRUCTURAL ANALYSIS COMPUTER PROGRAM

The Bell "General Purpose' Matrix Structural Analysis Program, coded for
operation on an IBM 7090 computer, is designed to accept the basic information des-
cribing a problem, establish its formulation, and perform all computations required
for the development of the desired stress and/or displacement results. The opera-
tional procedures for the program conform to the theory outlined earlier.

The basic problem information (input to the program) consists of:

(1) Dimensions of the structure

(2) Load and temperature conditions of interest
(3) Maierial mechanical properties

(4) Operational controls; i.e., specification of the desired printout items, etc.

(5) Designation of the discrete elements

From an operational standpoint, the Bell General Purpose Structural Analysis
Program consists of three major computational routines:

(1) A library of element stiffness relationships

(2) A routine wherein the master stiffness matrix is calculated, boundary
conditions are applied, and the matrix inverted.

(3) A routine which selects information from (1) and the resulting inverse
from (2), and calculates stress, displacement, etc.

Routine (1) is the key to the versatility of the program, since the capability to
analyze a given type of configuration is dependent upon the availability, in the element
library, of relationships for elements of the proper geometric form and behavior. A
listing of the more commonly used elements in the program is given as Table A-1.
These elements are pictured in Figure A-2. Elements employed in the subject analyses
are discussed in the next section.
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Three of the detailed operational capabilities of the program are of specific
interest:

(1) Although element properties are stored in the program in algebraic form
and are automatically evaluated on the basis of input data, it is also per-
missible to input directly an evaluated element stiffness matrix. Thus, if
the stiffness coefficients for a major component have been evaluated
elsewhere, this component can be represented in the analysis as a single
discrete element.

(2) Special coordinate axes can be established at any or all points. The force
and displacement vectors at each reference point are initially referenced
to a single set of axes for the complete structure (system axes). The need
for utilization of this capability arises, for example, in the following cases:

(a) A structure is constrained to displace in directions other than the sys-
tem axes (Figure A-3a). Thus, the x'-y' axes must be defined at all the
support points and used to specify the y'-direction constraints.

(b) On a shell in flexure, when the individual elements are each flat plates,
the two-dimensional moment vectors on the respective elements
meeting at a point produce on extremely small net vector in the direc-
tion normal to the tangent plane at the point (Figure A-3b). If the
coordinate axes are made to correspond to the tangent plane, this
degree-of-freedom normal to the tangent plane can be suppressed with

a consequent improvement in the accuracy of the solution.

(3) The inverted stiffness matrix (i.e., the flexibility matrix) can be stored on
‘ tape and any or all elements of this matrix can be recalled at a later time
for the purpose of subsequent dynamic analyses.
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APPENDIX B
DYNAMIC RESPONSE ANALYSIS PROCEDURE

1. GENERAL

The equations of motion for a system of grid points, describing an elastic struc-
ture, can be written in the following matrix form:

[M17A} + [D1fa} + [KIfa} = § Feer} (B-1)
where '

[M1 isthe mass matrix
L 01 is the damping matrix
[K] isthe pertinent stiffness matrix

fA} ,{A} ,&; are displacement, velocity and acceleration vectors, respectively

FeeyS  is a forcing function matrix

The displacement vector { A} can represent motion along and about coordinate axes.

The mass, damping and stiffness matrices will then consist of terms consistent with

thnan matinnag
o MUeilis,

Equation (B-1) is applicable to any elastic structure. The component matrices,
however, depend on the coordinate system employed. The displacement degrees of
freedom {A§ can be identical to those of the structural idealization grid system or
can be derived from the natural modes of vibration of the structure. The coordinates
resulting from the latter approach are called generalized coordinates and are dis-
cussed in detail in this Appendix. The appendix is concluded with a description of the
integration of Equation (B-1).

The use of generalized coordinates (or the so-called normal mode approach) re-
sults in equations of motion with the following characteristics:

(a) The first eight to ten modes of vibration will generally be sufficient for
dynamic response analysis purposes, as compared to perhaps 300-500
degrees of freedom required for the accurate determination of the flexibility
characteristics when the structural grid system is used. Therefore, lower
order matrices in Equation (B-1) will result.

(b) The mass matrix [ MJ will be a diagonal matrix as there will be no mass
coupling between the natural modes.

(c) The stiffness matrix [ K Jwill be a diagonal matrix since there will be no
elastic coupling between natural modes.
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The adoption of the model approach in the dynamic response analysis portion of
the investigation permits the initial determination of stiffness characteristics on the

refined basis described previously, while enabling the performance of computationally
efficient analyseés.

2. DYNAMIC RESPONSE EQUATION USING GENERALIZED COORDINATES

Consider the structural grid system sketched below where the ith grid point
has an assigned mass, mj, and is undergoing a displacement w;. In this instance,
the displacement vector {A } consists of the single translational degree of freedom

w at each grid point. The following results can readily be extended to include other
degrees of freedom.

Figure B-1. Typical Grid System

It is assumed that the displacement at point i, due to a dynamic load F(x, ) Y ) t)
can be represented by the series

oo

W (x4 )= ;‘3 Wy (%, y:) € j(¢) . (B-2)

where av; (X ) g,;)is the 7' = normalized vibration mode shape evaluated at the ¢ 4
point and § ; (t) is the generalized coordinate in the j";“ vibration mode.
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. <2h . .
The kinetic energy at the ¢~ point may be written as

2
T = % m,; [z&-,- (x, 4, ¢) ] (B-3)

or

"

T.

Expansion of Equation (B-4) yields

L - - . 2
t m z Wy §;1 (B-4)

L -2 -2 -2 2% .,
Te2 2 me 0 § Y2 me W 5. %
(B-5)
' - - . . ] - - d d
tzm w37 §,6, %7 m; w w6, + ---
Since natural modes are orthogonal the sum of terms of the form
) - - - o . ] - - <
Zme Wy wyb;8p=0, JFR; 7 om, Wy We 7o, }=4A
Thus, Equation (B-5) becomes
-1 - 2. -z 2 -2 -2 - c2 _
Lo gm LW g el gf v w54 v, 6, ] (B-6)
for j = k.
o : \ : oo o 9T
The kinetic energy term in Lagrange's equation of motion is given by FEACY
where T is the total kinetic energy of the system, i.e. g}
g oy -2 _—7°2 =202 (B-7)
TeZ TozL zam g edyfeevwefie.]
A= 4a=1 .
Thus, we can write 3=42,3,:00
N .o
o (Q_T ) =) m: g,
r\JE | I (B-8)
” - e
;{ ( Q.;P) = Z m; u’l-lgz
# agz L=t

etc.

or more generally

d (0T \. M. £.
% (52 ) Me & e

2
m; [w‘;( X, 5‘.)] is the generalized mass.
]

where M =

oA
ﬁ‘Mz
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The strain energy of the system is derivable by analogy to a simple spring-
mass system vibrating in a natural mode. When the entire grid system is vibrating in
a natural mode it can be said to have a mass Mf' (the generalized mass), displace-
ment & (the generalized displacement), stiffness Ky (the generalized stiffness) and
natural frequency wy . The net potential energy stored by this system is given by
(see Figure B-2).

U.
}
W772777777 NN B
. » 2
3 st o K.J Sst %
v€3
M.
3 8st 0 e]
g
Figure B-2. Displacement
U. = [2K (S +¢ )"—K §or ] ﬁ)E (B-10)
P | e AN ST D:)’I 2 Jf . >
M-
Since K; §¢r % Equation (B-10) can be rewritten as
2
U; = 2 Kg £ (B-11)
Now Kaz w‘;‘ MJ. (B-12)
2
hence Uz' = fz' wél My gé. . {B-13)

The total potential energy of the grid system is given by the following expression:

2

wMg+-‘sz&§a+...+2w 3'g......(Blll)

q
(1]
M8
C
b.\

Equation (B-14) is a quadratic function of the generalized coordinates f and agrees
with the approach discussed in Reference
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The potential energy term in Lagrange's equation of motion is given by _é_H

where U  is the total potential energy of the system. Thus 2 84
2
gﬂ' =W, M, £,
§ (B-15)
2
_é)__l]‘ = wz Mz gz

i"etc .

or more generally

_;_L]-L(-'.A (B-16)
S i b B

z
where K e | M£ is the generalized stiffness and wt‘ is the frequency of the
vibration mode.

In accordance with Reference 17 an energy dissipation function associated with
structural damping can be setup as follows

- 147 % AN
D- =L h%‘_a& 5; , (B-16a)

3 2
D

o4 is the damping term associated with the j,'-'-" mode, ¢ is the damping coefficient

in the £~ meode and wis the response frequency. Thedamping term in Lagrange's
equations of motion is given by 9:? where D is the total energy dissipated. Thus,
we may write 9 54;
oD . DiEy (B-17)
; § {

where D 1-,-: Miw?, 94 the generalized damping.
w

The total virtual work done on the system due to an incremental displacement
(or virtual displacement) in each degree of freedom is

v
SWe = Z Fxiyui,t) §w (xi, o ) (B-18)
A
Substitution of Equation (B-2) into Equation (B-18) yields

5w,=2(z. Wi, 4c) F(*’:,?e,t))sfi (B-19)

£51 L
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The generalized force term in Lagrange's equations of motion is given by

. Jd(§We) (B-20)
Qj J(5§3)
thus
N
Qa' = #,Z:' 233,‘(1,:,’1;”:(1';)7‘-)’6) (B-21)

Equations (B-9), (B-16), (B-17), and (B-21) are summed . to form the differential
equations of motion of the system.

Mfgf +Dj§i +k}‘€f:Q3'

or in matrix form

[MI{E 3+ [0I{€ 5 +[«1fe] = {af.

(B-22)

(B-23)

Equation (B-23) is identical in form to Equation (B-1) with the exception that
the matrix coeffi¢ients are diagonal; that is, the equations of motion are uncoupled.

For a finite number of vibration modes, say j = 3, a finite number of grid
points, say N = 6, and forcing functions acting only at grid points 1 and 2, three
equations in three unknowns are obtained as follows:

M o o

OMzo

-

0o o0 Mg

- i
?;)-,(xp ‘Jl) wy (xl)jz)
Wy(X,, 9 ) 1 ( %ay42)

z%(x,,g.) Ws (X2,4,)
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Note that the number of modes determines the matrix order of the left-hand
side of the equation while the number of modes and number of forcing functions de-~
termine the matrix order on the right-hand side.

It is a simple matter to determine the true displacement at a grid point by use
of Equation (B-2) once the generalized displacements as a function of time are known.
Suppose that in the present illustrative example displacements at grid points 1, 3, 5,
and 6 are desired. Use of Equation (B-2) yields the matrix expression.

7‘/("-,70‘) W x,4,) Z“}i("':;‘l’:) ?7/3'()(,,‘[,) gn(t)

wix,,¢) - X, 4) T (X, 45) W5(%, ;) £,(¢) .(B-25)
W(xf,’f)t) 2‘7'—{)(-7) 3!) 27,2(’(5) 7’5) 23:;(’(5; fe) g;(t)

W(’fs,y‘,t) ?‘?(XG, 7& ) @2('\") 76) ?‘?{(X‘llf‘ ) ]

This same matrix expression is used to determine grid point velocities and accelera-
tions by replacing the {{ (t) } matrix by{{ (+ )3 and Z( §(t)} matrices.

3. INTEGRATION OF THE EQUATIONS OF MOTION

The evaluation of dynamic response, in the form of time histories for A , A
and A involves the determination of instantaneous acceleration over a small interval
of time, followed by the performance of single and double integrations to obtain velocity
and displacement changes over the same interval. The velocity and displacement
changes are then added to the initial starting values, and the process is repeated for
the next interval. This process forms the basis of the Bell-Matrix-Iteration-Time-
History program which is described below. Note that the method applies equally well
to Equation (B-1) or (B-23).

The method proceeds as follows. First, Equation (B-1) is written in the form
of a solution for A’}

A3IM] {{F} [0)fA3 -l fa}] (B-26)

The matrices{F' } ,[M.] )[D]md[ Klare known. For any starting time t,, the values of
{ A}a.nd { A 3 are prescribed. The latter are zero if the system is initially at rest.

The foregoing values of acceleration computed for t_ are assumed to exist over
a small time interval, t] - to, and values of é A }are computed from
]

2A3.= {AOS +i (t,—t,){{ﬁ}'+{2§}°} (B-27) |
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which will be recognized as a simple time integration. Then, the displacement at the
end of t1 is then computed from a second integration

fap={8},+z (tu‘to){fA.}. + U:\Sj (B-28)

It will be noted that average velocities and displacements are obtained simply as one-
half the sum of the initial and final values. While much more elaborate formulations
could be used, they are considered less desirable than using closely spaced time
intervals.

It will be noted that some error will exist in the above computations when the
system is elastically deformed since the deflection pattern at ty will not be the same
as at ty, causing accelerations at t, to be different than accelerations at ty via
Equation (B-26). To eliminate this error, an iterative procedure is used. This in-
volves recomputing accelerations for t using the velocities and displacements from
the initial computation. These accelerations are then used in Equation (B-27) to ob-
tain more accurate average velocities than were obtained the first time when it was
assumed that the initial acceleration remained constant over the time interval. The
new velocities A, are then used in Equation (B-28) to obtain more accurate final
displacements.

The cycle of acceleration, velocity and displacement computations is repeated
until convergence to a satisfactory number of digits. Convergence is extremely
rapid, particularly when time intervals are small enough to avoid rapid changes in
acceleration between time intervals. After convergence has been obtained, the com-
putation proceeds tot = to and repeats the process already described here for t =tj,
etc. In this manner, time histories for A , A and A are computed.
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APPENDIX C
MATRIX INSTABILITY ANALYSIS PROCEDURE-LINEAR

1. THEORETICAL BASIS

Elastic instability can occur for prismatic thin-walled structures or thin
shells, where the behavior across the thickness can be subdivided into "flexural"
and ""midplane' behavior. By virtue of displacements normal to the midplane, the
membrane forces have components which tend to enhance these displacements.
When their magnitude is sufficiently large they produce — in the context of linear
theory — infinitely large displacementsfor infinitesimal changes of the applied load.
The values of applied load which produce the membrane stress state to cause this
instability are the "critical loads".

In the case of straight beams and flat plates, the membrane forces are entirely
independent of flexural behavior if finite displacements are disregarded in the formu-
lation of the strain-displacement equations. For more general configurations such
as shells, however, the applied loads produce membrane and flexural deformations
which are related to each other. These influences are accounted for in the present
elastic instability analysis process, although the nonlinear terms in the strain-dis-
placement equations continue to be disregarded.

2, THEORETICAL BASIS

Although the interaction between the membrane and flexural behaviors is
accounted for in the overall analysis procedure for the assembled structure, the
elements are in themselves flat elements and their membrane and flexural stiffness
relationships can be developed separately.

In view of this independence of element flexural and membrane behaviors, one
can partition a plate element (Figure C-1) stiffness matrix, given earlier as Equation
A-1 of Appendix A, as follows

rFx] ()

Fy‘ K”\

_ - (C-1)
T S DR I
Mx' O : KF exl
My L : - 27,

where the primes designate ''local coordinates (the coordinate system affixed to the
element).

Report No. 7218-933004 C-1




The membrane stiffness for the flat plate element is not directly affected by
instability considerations. As shown subsequently, however, element stiffness for
flexural behavior in the presence of membrane forces becomes the sum of two com-

ponent stiffnesses:
Kl = [K, 1 +nl (-2

where [Kdis the stiffness for flexural behavior in the absence of instability effects
(the conventional flexural stiffness matrix) and [h ] represents the effects of the
element membrane forces on the element flexural behavior. The terms of [h] con-
sist of the dimensions of the element and the values of the membrane forces acting
upon the element. Material properties do not appear in the [nJ matrix.

Using Equation (C-2), the total element stiffness matrix can be written as

Yr o+« 1 (9 LR

/ : U U

Fx K“ : 0 ) O i O ’

Fy' [} V | —V
Fz>= --k-— Wt o+ ——%—— <\,,/'> (C-3)

|

¢ | !

Mx Io) :Kb ex, 0 n exJ

wf Lol led L e

The coupling of membrane and flexural behaviors in a complete analysis stems
from the coupling of the elements at the joints. In the general case, the respective
elements will be randomly oriented with respect to the system axes. When joining
the elements at the node points (i.e., when applying the conditions of joint equili-
brium), a given force component in a particular local direction will be transformed
into components in all three system directions. As shown in Figure C-2 in two
dimensions, the Fx"‘ force is transformed into components of both Fx, and F, Ya
when the equations of equilibrium are written at point i. By virtue of this operation,
the respective force components of the elements in local coordinate directions con-
tribute to all three directions in the system-coordinate equations for the complete
structure. Thus, in the presence of instability effects, the latter have the following
general form: '

\ B ' y ) i I 1 7

Po | | Kep ! Ken| [¥ Nee ' Nop u |

P, l v I v

I . |

AR S I I A

Mx 1 9‘ | 9, (C'4)
] )

"y K | Houm| (& Nmp | Nep | 7[5

M*ZJ - . 91! J ! . ;e‘J

v PN} KIE) (NI
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Equations (C-4) are the governing equations for the total problem. In parti-
cular, it is to be noted that the evaluation of the [N] matrix requires a knowledge of
the membrane stress state. Classical analysis techniques commonly assume that
the membrane stress state is unaffected by flexural deformation. Based on this
assumption, a membrane stress state is readily determined. The same approach
can, of course, be taken on a discrete element analysis. The determinate membrane
stress state would be hand computed and used to calculate the [N ]matrix.

The digital computation procedure has been arranged, however, so that the
latter simplification need not be made. Consider first an equilibrium analysis, where
the applied loads are not large enough to cause buckling. The analysis would begin
with the[N] matrix first set equal to zero - instability effects are disregarded. The
solution for displacements is then

INIE ] fP, M} (C-5)

The so-determined values of { A }are next used in the element stress equations (see
Equation A-4 of Appendix A and the related discussion) to obtain a first guess for
the membrane stresses. These membrane stresses account for the influence of
bending. With these membrane stress values, the matrix [N J can be constructed
and Equation (C-4) is solved as follows

EA_} : [[K]"w ]]-l{ P) Mf (C-6)

Again, element membrane stresses are evaluated and the process continues iteratively
until convergence.

To predict buckling, the approach taken involves a sequence of eigenvalue
determinations for a succession of assumed applied load levels. In a given eigen-
value determination, based on an assumed applied load level, it is assumed that all
midplane forces are at a fixed ratio to one another at all levels of applied load--
from the load level chosen up to the specific value predicted to cause instability in
the eigenvalue determination. Thus, Equation (C-4) is written as:

{P Mg ]{ } + A[N {A} (C-T)

where [N ]is constructed from membrane stresses consistent with the assumed
applied load level and A is the scalar multiplier which defines the buckling level con-
sistent with the membrane stress state for the assumed applied load level. Setting
iP , M } equal to zero for the purposes of eigenvalue analysis

0 =[klfa} + a[~v1{s] (C-8)
{83« - [x] v ]{e} o

Using matrix iteration, the above can be solved for the eigenvalues a; and the
associated eigenvectors ZA‘-}. There will be as many such eigenvalues as there are
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equations in (C-8), but the only eigenvalue of interest is the largest value of |\ re-
presenting the smallest A, and, therefore, the lowest magnitude load at which elastic
instability will be experienced.

The actual buckling load will, of course, occur only when the determined A=
1.0. To accomplish this, a trial and error process is attempted. First, an obviously
low value of applied load is assumed, resulting in a high value of (> 1.0).  This is
shown as Point A in Figure C-3. Correspondingly, if the assumed load level is higher
than that which causes buckling, the predicted A will be less than 1.0 (Point B). By
obtaining values of A at various assumed load levels (Points C & D), the load level
for buckling can be determined (Point E).

It should be noted that the determination of A for an assumed buckling load
level is accomplished only after a sequence of iterative analyses has been performed
(in the manner described previously) to determine a convergent membrane stress
system and, therefore, [N] matrix.

3. ELEMENT RELATIONSHIPS

Procedures for formulating discrete element force-displacement equations
were reviewed earlier, in Appendix A. These procedures are based on the use of
Castigliano's Theorem, which, in the formulation of a stiffness matrix takes the

form T \

I'/] = ! il
[kl={(B1) [c]IB] (C-10)

where [B] is the matrix defining the element node point displacements { Ae} as a
function of the undetermined parameters, of the assumed displacement functions for

this element, i.e.
fa}-[B] [ o]

and [C ] is a matrix, each row of which represents the derivative of the strain
energy of deformation of the element (U) with respect to one of the undetermined
parameters.

Reference 6 shows that the above approach can be employed in the derivation
of stiffness matrices which include instability effects if [C Jis expressed as the sum
of two matrices

L) = [¢ Jlc,] (C-12)
where [Cb ]derives from the strain energy for flexure along, ( U, ) and [C n]

represents the work done by the edge membrane forces acting through the edge dis-
placements of the element(U,, ).
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Figure C-1. Flat Plate Element
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Figure C-2. Joint Equilibrium Conditions
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Figure C-3. Iterative Determination of Critical Load
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For plates,

(C-13)
¥ Juw \2 dw ? Jw
Uy == JIN (270 Ny (32 420 (32) (2 )] 0m
Ub was given previously, in Appendix A
Substituting (C-12) and (C-10)

k1= ([8]") [CIUBY+([BI ) [Ca1[B] o

so that, by comparison with Equation (C-2)

k- ([8]) [c¢I[B] o
In] = ( fBJ_,)T[ C,,J [B J" (C-16)

Using the above concepts, and the assumed plate element deflectional nodes
described in Appendix A, detailed derivations of the flexural stiffnesses for the
triangle and quadrilateral have been performed and are presented in Reference 3.
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